1,186 research outputs found
DECAY FACTOR WITH EXPERIMENTAL VARIABLES IN TWO CIRCULATING FLUIDIZED BED (CFB) RISERS
The effects of the riser inlet velocity, solid mass flux and particle size on the axial solid holdup profile and decay factor were investigated using two circulating fluidized beds (CFBs) with FCC (Geldart A) particles as the bed materials. Based on the experimental results from the two-CFBs, the axial solid holdup in the two CFBs were compared with the correlations of previous studies. Also, an empirical correlation was proposed for decay factor that exhibited a good agreement with experimental data
Kinetic study for the optimization of ginsenoside Rg3 production by heat treatment of ginsenoside Rb1
AbstractBackgroundGinsenoside Rg3 is a promising anticancer agent. It is usually produced by heat treatment of ginseng, in which ginsenoside Rb1 is the major ginsenoside. A kinetic study was conducted to optimize ginsenoside Rg3 production by the heat treatment of ginsenoside Rb1.MethodsGinsenoside Rb1 was heated using an isothermal machine at 80°C and 100°C and analyzed using HPLC. The kinetic parameters were calculated from the experimental results. The activation energy was estimated and used to simulate the process. The optimized parameters of ginsenoside Rg3 production are suggested based on the simulation.ResultsThe rate constants were 0.013 h−1 and 0.073 h−1 for the degradation of ginsenosides Rb1 and Rg3 at 80°C, respectively. The corresponding rate constants at 100°C were 0.045 h−1 and 0.155 h−1. The estimated activation energies of degradation of ginsenosides Rb1 and Rg3 were 69.2 kJ/mol and 40.9 kJ/mol, respectively. The rate constants at different temperatures were evaluated using the estimated activation energies, and the kinetic profiles of ginsenosides Rb1 and Rg3 at each temperature were simulated based on the proposed kinetic model of consecutive reaction. The optimum strategies for producing ginsenoside Rg3 from ginsenoside Rb1 are suggested based on the simulation. With increased temperature, a high concentration of ginsenoside Rg3 is formed rapidly. However, the concentration decreases quickly after the reaching the maximal concentration value.ConclusionThe optimum temperature for producing ginsenoside Rg3 should be the highest temperature technically feasible below 180°C, in consideration of the cooling time. The optimum reaction time for heat treatment is 30 min
Electrical current suppression in Pd-doped vanadium pentoxide nanowires caused by reduction in PdO due to hydrogen exposure
Pd nanoparticle-doped vanadium pentoxide nanowires (Pd-VONs) were synthesized. Electrical current suppression was observed when the Pd-VON was exposed to hydrogen gas, which cannot be explained by the work function changes mentioned in previous report such as Pd-doped carbon nanotubes and SnO 2 nanowires. Using the x-ray photoelectron spectroscopy, we found that the reduction in PdO due to hydrogen exposure plays an important role in the current suppression of the Pd-VON.open4
Measuring the social value of nuclear energy using contingent valuation methodology
As one of the promising energy sources for the next few decades, nuclear energy receives more attention than before as environmental issues become more important and the supply of fossil fuels becomes unstable. One of the reasons for this attention is based on the rapid innovation of nuclear
technology which solves many of its technological constraints and safety issues. However, regardless of
these rapid innovations, social acceptance for nuclear energy has been relatively low and unchanged. Consequently, the social perception has often been an obstacle to the development and execution of nuclear policy requiring enormous subsidies which are not based on the social value of nuclear energy. Therefore, in this study, we estimate the social value of nuclear energy-consumers’ willingness-to-pay for nuclear energy—using the Contingent Valuation Method (CVM) and suggest that the social value of nuclear energy increases approximately 68.5% with the provision of adequate information about nuclear energy to the public. Consequently, we suggest that the social acceptance management in nuclear policy development is important along with nuclear technology innovation
Population Dynamics of Five Anopheles Species of the Hyrcanus Group in Northern Gyeonggi-do, Korea
To investigate the population densities of potential malaria vectors, Anopheles species were collected by light traps in malaria endemic areas, Paju and Gimpo, Gyeonggi-do of Korea. Five Anopheles Hyrcanus sibling species (An. sinensis, An. pullus, An. lesteri, An. kleini, and An. belenrae) were identified by PCR. The predominant species, An. pullus was collected during the late spring and mid-summer, while higher population consists of An. sinensis were collected from late summer to early autumn. These 2 species accounted for 92.1% of all Anopheles mosquitoes collected, while the other 3 species accounted for 7.9%. Taking into account of these population densities, late seasonal prevalence, and long-term incubation period (9-13 months) of the Korean Plasmodium vivax strain, An. sinensis s.s is thought to play an important role in the transmission of vivax malaria in the study areas
Linguistic Validation of the Intermittent Self-catheterization Questionnaire for Patients With Neurogenic Bladder Who Perform Intermittent Catheterization for Voiding Dysfunction
Purpose In recent years, the importance of patient satisfaction and quality of life—referred to as patient-related outcomes— has been emphasized, in addition to the evaluation of symptoms and severity through questionnaires. However, the questionnaires that can be applied to Korean patients with neurogenic bladder are limited. Therefore, the current study linguistically validated the Intermittent Self-Catheterization Questionnaire (ISC-Q) as an instrument to evaluate the quality of life of Korean patients with neurogenic bladder who regularly perform clean intermittent catheterization (CIC). Methods The validation process included permission for translation, forward translations, reconciliation, backward translation, cognitive debriefing, and proofreading. Two bilingual translators independently translated the original version of the ISC-Q into Korean and then combined the initial translations. A third bilingual translator performed a backward translation of the reconciled version into English. Five Korean-speaking patients with neurogenic bladder carried out the cognitive debriefing. Results During the forward translation process, the 24 questions of the ISC-Q were translated into 2 Korean versions. The terms used in each version were adjusted from the original version to use more conceptually equivalent expressions in Korean. During the backward translation process, several changes were involving substitutions of meaning. In the cognitive debriefing process, 5 patients were asked to complete the questionnaire. All patients agreed that the questionnaire explained their situation well. Conclusions This study presents a successful linguistic validation of the Korean version of the ISC-Q, which could be a useful tool for evaluating treatment satisfaction in patients with neurogenic bladder performing CIC regularly
Anisotropic rupture of polymer strips driven by Rayleigh instability
We demonstrate that the separated polymer strips of micro- and sub-micro-length-scales rupture anisotropically along the strip direction, resulting in the formation of distinctly observable, regularly spaced polymer drops. The wavelength of the polymer drops and the surface tension dependence of
the rupture behavior are found to be well represented by a relationship derived on the basis of Rayleigh instability. The period is proportional to the square root of the cross-sectional area of the strip and the proportionality constant depends on the contact angle. The rupture of polymer strips
into polymer blocks instead of drops, which result when annealed with physically confining walls in place, is found to be well described by the same relationship.K.Y.S. is grateful for the financial support from the Micro Thermal Research Center of Seoul National University
Polyelectrolyte complex micelles by self-assembly of polypeptide-based triblock copolymer for doxorubicin delivery
AbstractPolyelectrolyte complex micelles were prepared by self-assembly of polypeptide-based triblock copolymer as a new drug carrier for cancer chemotherapy. The triblock copolymer, poly(l-aspartic acid)-b-poly(ethylene glycol)-b-poly(l-aspartic acid) (PLD-b-PEG-b-PLD), spontaneously self-assembled with doxorubicin (DOX) via electrostatic interactions to form spherical micelles with a particle size of 60–80 nm (triblock ionomer complexes micelles, TBIC micelles). These micelles exhibited a high loading capacity of 70% (w/w) at a drug/polymer ratio of 0.5 at pH 7.0. They showed pH-responsive release patterns, with higher release at acidic pH than at physiological pH. Furthermore, DOX-loaded TBIC micelles exerted less cytotoxicity than free DOX in the A-549 human lung cancer cell line. Confocal microscopy in A-549 cells indicated that DOX-loaded TBIC micelles were transported into lysosomes via endocytosis. These micelles possessed favorable pharmacokinetic characteristics and showed sustained DOX release in rats. Overall, these findings indicate that PLD-b-PEG-b-PLD polypeptide micelles are a promising approach for anti-cancer drug delivery
- …