424 research outputs found

    Identification and Characterization of a Dual-Acting Antinematodal Agent against the Pinewood Nematode, Bursaphelenchus xylophilus

    Get PDF
    The pinewood nematode (PWN), Bursaphelenchus xylophilus, is a mycophagous and phytophagous pathogen responsible for the current widespread epidemic of the pine wilt disease, which has become a major threat to pine forests throughout the world. Despite the availability of several preventive trunk-injection agents, no therapeutic trunk-injection agent for eradication of PWN currently exists. In the characterization of basic physiological properties of B. xylophilus YB-1 isolates, we established a high-throughput screening (HTS) method that identifies potential hits within approximately 7 h. Using this HTS method, we screened 206 compounds with known activities, mostly antifungal, for antinematodal activities and identified HWY-4213 (1-n-undecyl-2-[2-fluorphenyl] methyl-3,4-dihydro-6,7-dimethoxy-isoquinolinium chloride), a highly water-soluble protoberberine derivative, as a potent nematicidal and antifungal agent. When tested on 4 year-old pinewood seedlings that were infected with YB-1 isolates, HWY-4213 exhibited a potent therapeutic nematicidal activity. Further tests of screening 39 Caenorhabditis elegans mutants deficient in channel proteins and B. xylophilus sensitivity to Ca2+ channel blockers suggested that HWY-4213 targets the calcium channel proteins. Our study marks a technical breakthrough by developing a novel HTS method that leads to the discovery HWY-4213 as a dual-acting antinematodal and antifungal compound

    Antitumor Activity of TRAIL Recombinant Adenovirus in Human Malignant Glioma Cells

    Get PDF
    Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL) has been reported to specifically kill malignant cells but to be relatively nontoxic to normal cells. One of disadvantages to previous in vivo protocols was the need for large quantities of TRAIL recombinant protein to suppress tumor growth. To evaluate the antitumor activity and therapeutic value of the TRAIL gene, we constructed adenoviral vectors expressing the human TRAIL gene (Ad.hTRAIL) and transferred them into malignant glioma cells in vitro and tumors in vivo, as an alternative to recombinant soluble TRAIL protein. The results show that TRAIL-sensitive glioma cells infected Ad.hTRAIL undergo apoptosis through the production and expression of TRAIL protein. The in vitro transfer elicited apoptosis, as demonstrated by the quantification of viable or apoptotic cells and by the analysis of cleavage of poly (ADP-ribose) polymerase. Furthermore, in vivo administration of Ad.hTRAIL at the site of tumor implantation suppressed the outgrowth of human glioma xenografts in SCID mice. These results further define Ad.hTRAIL as an anti-tumor therapeutic and demonstrate its potential use as an alternative approach to treatment for malignant glioma

    Design and Bolometer Characterization of the SPT-3G First-year Focal Plane

    Get PDF
    During the austral summer of 2016-17, the third-generation camera, SPT-3G, was installed on the South Pole Telescope, increasing the detector count in the focal plane by an order of magnitude relative to the previous generation. Designed to map the polarization of the cosmic microwave background, SPT-3G contains ten 6-in-hexagonal modules of detectors, each with 269 trichroic and dual-polarization pixels, read out using 68x frequency-domain multiplexing. Here we discuss design, assembly, and layout of the modules, as well as early performance characterization of the first-year array, including yield and detector properties.Comment: Conference proceeding for Low Temperature Detectors 2017. Accepted for publication: 27 August 201

    Molecular Time-Course and the Metabolic Basis of Entry into Dauer in Caenorhabditis elegans

    Get PDF
    When Caenorhabditis elegans senses dauer pheromone (daumone), signaling inadequate growth conditions, it enters the dauer state, which is capable of long-term survival. However, the molecular pathway of dauer entry in C. elegans has remained elusive. To systematically monitor changes in gene expression in dauer paths, we used a DNA microarray containing 22,625 gene probes corresponding to 22,150 unique genes from C. elegans. We employed two different paths: direct exposure to daumone (Path 1) and normal growth media plus liquid culture (Path 2). Our data reveal that entry into dauer is accomplished through the multi-step process, which appears to be compartmentalized in time and according to metabolic flux. That is, a time-course of dauer entry in Path 1 shows that dauer larvae formation begins at post-embryonic stage S4 (48 h) and is complete at S6 (72 h). Our results also suggest the presence of a unique adaptive metabolic control mechanism that requires both stage-specific expression of specific genes and tight regulation of different modes of fuel metabolite utilization to sustain the energy balance in the context of prolonged survival under adverse growth conditions. It is apparent that worms entering dauer stage may rely heavily on carbohydrate-based energy reserves, whereas dauer larvae utilize fat or glyoxylate cycle-based energy sources. We created a comprehensive web-based dauer metabolic database for C. elegans (www.DauerDB.org) that makes it possible to search any gene and compare its relative expression at a specific stage, or evaluate overall patterns of gene expression in both paths. This database can be accessed by the research community and could be widely applicable to other related nematodes as a molecular atlas
    • …
    corecore