9 research outputs found

    Contextual Linear Bandits under Noisy Features: Towards Bayesian Oracles

    Full text link
    We study contextual linear bandit problems under uncertainty on features; they are noisy with missing entries. To address the challenges from the noise, we analyze Bayesian oracles given observed noisy features. Our Bayesian analysis finds that the optimal hypothesis can be far from the underlying realizability function, depending on noise characteristics, which is highly non-intuitive and does not occur for classical noiseless setups. This implies that classical approaches cannot guarantee a non-trivial regret bound. We thus propose an algorithm aiming at the Bayesian oracle from observed information under this model, achieving O~(dT)\tilde{O}(d\sqrt{T}) regret bound with respect to feature dimension dd and time horizon TT. We demonstrate the proposed algorithm using synthetic and real-world datasets.Comment: 30 page

    Efficient Parallel Audio Generation using Group Masked Language Modeling

    Full text link
    We present a fast and high-quality codec language model for parallel audio generation. While SoundStorm, a state-of-the-art parallel audio generation model, accelerates inference speed compared to autoregressive models, it still suffers from slow inference due to iterative sampling. To resolve this problem, we propose Group-Masked Language Modeling~(G-MLM) and Group Iterative Parallel Decoding~(G-IPD) for efficient parallel audio generation. Both the training and sampling schemes enable the model to synthesize high-quality audio with a small number of iterations by effectively modeling the group-wise conditional dependencies. In addition, our model employs a cross-attention-based architecture to capture the speaker style of the prompt voice and improves computational efficiency. Experimental results demonstrate that our proposed model outperforms the baselines in prompt-based audio generation.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    High methane combustion activity of PdO/CeO2–ZrO2–NiO/γ-Al2O3 catalysts

    No full text
    PdO/CeO2–ZrO2–NiO/γ-Al2O3 catalysts were prepared for the combustion of methane at moderate temperatures. The introduction of a small amount of NiO within the cubic fluorite CeO2–ZrO2 structure as a promoter effectively enhanced the oxygen release and storage abilities of the catalysts, thereby achieving the complete oxidation of methane. The catalyst with the highest activity for methane combustion was 11.3 mass% PdO/20 mass% Ce0.64Zr0.16Ni0.2O1.9/γ-Al2O3, and efficient combustion was realized at a temperature as low as 300 °C

    Preservation of Global Knowledge by Not-True Distillation in Federated Learning

    Full text link
    In federated learning, a strong global model is collaboratively learned by aggregating clients' locally trained models. Although this precludes the need to access clients' data directly, the global model's convergence often suffers from data heterogeneity. This study starts from an analogy to continual learning and suggests that forgetting could be the bottleneck of federated learning. We observe that the global model forgets the knowledge from previous rounds, and the local training induces forgetting the knowledge outside of the local distribution. Based on our findings, we hypothesize that tackling down forgetting will relieve the data heterogeneity problem. To this end, we propose a novel and effective algorithm, Federated Not-True Distillation (FedNTD), which preserves the global perspective on locally available data only for the not-true classes. In the experiments, FedNTD shows state-of-the-art performance on various setups without compromising data privacy or incurring additional communication costs.Comment: Under revie

    Expression of ATP/GTP Binding Protein 1 Has Prognostic Value for the Clinical Outcomes in Non-Small Cell Lung Carcinoma

    No full text
    ATP/GTP binding protein 1 (AGTPBP1) encodes a crucial protein, cytosolic carboxypeptidase 1 (CCP1), which plays a role in modulating the polyglutamylation of tubulin and has been studied in degenerative diseases. However, the role of AGTPBP1 in malignancy has not been completely studied yet. In this study, we examined the role of AGTPBP1 in cancer progression, its association with patient survival, and related mechanisms in lung cancer, using the A549 cell line and lung cancer gene expression datasets. AGTPBP1 knockdown increased the proliferation, migration, sphere formation, and drug resistance of A549 cells. Lung cancer datasets revealed significantly lower mRNA and protein expression levels of AGTPBP1 in lung cancer tissues, as compared to those in normal tissues. Importantly, AGTPBP1 expression positively correlated with patient survival. Analysis of co-expressed genes revealed that AGTPBP1 expression positively correlated with immune infiltration in lung cancer. Our results conclusively suggested that AGTPBP1 expression was correlated with cancer progression and immune infiltration in lung cancer
    corecore