144 research outputs found

    Quasi-Eigenstate Evolution in Open Chaotic Billiards

    Full text link
    We experimentally studied evolution of quasi-eigenmodes as classical dynamics undergoing a transition from being regular to chaotic in open quantum billiards. In a deformation-variable microcavity we traced all high-Q cavity modes in a wide range of frequency as the cavity deformation increased. By employing an internal parameter we were able to obtain a mode-dynamics diagram at a given deformation, showing avoided crossings between different mode groups, and could directly observe the coupling strengths induced by ray chaos among encountering modes. We also show that the observed mode-dynamics diagrams reflect the underlying classical ray dynamics in the phase space.Comment: 4 pages, 4 figure

    Development of deformation-tunable quadrupolar microcavity

    Full text link
    We have developed a technique for realizing a two-dimensional quadrupolar microcavity with its deformation variable from 0% to 20% continuously. We employed a microjet ejected from a noncircular orifice in order to generate a stationary column with modulated quadrupolar deformation in its cross section. Wavelength red shifts of low-order cavity modes due to shape deformation were measured and were found to be in good agreement with the wave calculation for the same deformation, indicating the observed deformation is quadrupolar in nature.Comment: 7 pages, 6 figures, intended for Rev. Sci. Instu

    Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers

    Full text link
    Efficient nonresonant optical pumping of a high-Q scar mode in a two-dimensional quadrupole-deformed microlaser has been demonstrated based on ray and wave chaos. Three-fold enhancement in the lasing power was achieved at a properly chosen pumping angle. The experimental result is consistent with ray tracing and wave overlap integral calculations.Comment: 3 pages, 5 figure

    A lab-on-a-disc platform enables serial monitoring of individual CTCs associated with tumor progression during EGFR-targeted therapy for patients with NSCLC

    Get PDF
    Rationale: Unlike traditional biopsy, liquid biopsy, which is a largely non-invasive diagnostic and monitoring tool, can be performed more frequently to better track tumors and mutations over time and to validate the efficiency of a cancer treatment. Circulating tumor cells (CTCs) are considered promising liquid biopsy biomarkers; however, their use in clinical settings is limited by high costs and a low throughput of standard platforms for CTC enumeration and analysis. In this study, we used a label-free, high-throughput method for CTC isolation directly from whole blood of patients using a standalone, clinical setting-friendly platform. Methods: A CTC-based liquid biopsy approach was used to examine the efficacy of therapy and emergent drug resistance via longitudinal monitoring of CTC counts, DNA mutations, and single-cell-level gene expression in a prospective cohort of 40 patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer. Results: The change ratio of the CTC counts was associated with tumor response, detected by CT scan, while the baseline CTC counts did not show association with progression-free survival or overall survival. We achieved a 100% concordance rate for the detection of EGFR mutation, including emergence of T790M, between tumor tissue and CTCs. More importantly, our data revealed the importance of the analysis of the epithelial/mesenchymal signature of individual pretreatment CTCs to predict drug responsiveness in patients. Conclusion: The fluid-assisted separation technology disc platform enables serial monitoring of CTC counts, DNA mutations, as well as unbiased molecular characterization of individual CTCs associated with tumor progression during targeted therapy

    Hanja alexia with agraphia after left posterior inferior temporal lobe infarction: a case study.

    Get PDF
    Korean written language is composed of ideogram (Hanja) and phonogram (Hangul), as Japanese consists of Kanji (ideogram) and Kana (phonogram). Dissociation between ideogram and phonogram impairment after brain injury has been reported in Japanese, but few in Korean. We report a 64-yr-old right-handed man who showed alexia with agraphia in Hanja but preserved Hangul reading and writing after a left posterior inferior temporal lobe infarction. Interestingly, the patient was an expert in Hanja; he had been a Hanja calligrapher over 40 yr. However, when presented with 65 basic Chinese letters that are taught in elementary school, his responses were slow both in reading (6.3 sec/letter) and writing (8.8 sec/letter). The rate of correct response was 81.5% (53 out of 65 letters) both in reading and writing. The patient's performances were beyond mean-2SD of those of six age-, sex-, and education-matched controls who correctly read 64.7 out of 65 and wrote 62.5 out of 65 letters with a much shorter reaction time (1.3 sec/letter for reading and 4.0 sec/letter for writing). These findings support the notion that ideogram and phonogram can be mediated in different brain regions and Hanja alexia with agraphia in Korean patients can be associated with a left posterior inferior temporal lesion

    High-Power Diode-Pumped Short Pulse Lasers Based on Yb:KGW Crystals for Industrial Applications

    Get PDF
    A diode-pumped, ultrafast Yb:KYW laser system utilizing chirped-pulse amplification (CPA) in a dual-slab regenerative amplifier (RA) with spectral shaping of seeding pulse from a master oscillator (MO) has been developed. A train of compressed pulses with pulse length of 181 fs, repetition rate up to 500 kHz, and average power exceeding 15 W after compression and pulse picker was achieved
    corecore