615 research outputs found

    New Methodology for Measuring Semantic Functional Similarity Based on Bidirectional Integration

    Get PDF
    1.2 billion users in facebook, 17 million articles in Wikipedia, and 190 million tweets per day have demanded significant increase of information processing through Internet in recent years. Similarly life sciences and bioinformatics also have faced issues of processing Big data due to the explosion of publicly available genomic information resulted from the Human Genome Project (HGP) and the increasing usage of high throughput technology. HGP was completed in 2003 and resulted in identifying 20,000-25,000 genes in human DNA and determining the sequences of three billion human base pairs. The information requires huge amount of data storage and becomes difficult to process using on-hand database management tools or traditional data processing applications. This thesis introduces new method, Biological and Statistical Mean (BSM) score to calculate functional similarity between gene products (GPs) that can help to extract biologically relevant and statistically robust information from large-scale biomedical, genomic and proteomic data sources. BSM score is defined by 16 different scoring matrices derived from principles of multi-view learning in machine learning algorithm and five different databases including Gene Ontology, UniProt, SCOP, CATH, and KUPS. The proposed method also shows how diverse databases and principles in machine learning theory can be integrated into a simple scoring function, and how the simple concept can give significant impact on the studies in biomedical and human life sciences. The comprehensive evaluations and performance comparisons with other conventional methods show that BSM score clearly outperforms other methods in terms of sensitivity of clustering similarity functional groups and coverage of identifying related genes. As a part of potential applications handling large amount of diverse data sources in medical domain, this thesis introduces similarity-based drug target identification and disease networks using BSM scores. Application of BSM score is freely available through http://www.ittc.ku.edu/chenlab/goal

    A NEW METHODOLOGY FOR IDENTIFYING INTERFACE RESIDUES INVOLVED IN BINDING PROTEIN COMPLEXES

    Get PDF
    Genome-sequencing projects with advanced technologies have rapidly increased the amount of protein sequences, and demands for identifying protein interaction sites are significantly increased due to its impact on understanding cellular process, biochemical events and drug design studies. However, the capacity of current wet laboratory techniques is not enough to handle the exponentially growing protein sequence data; therefore, sequence based predictive methods identifying protein interaction sites have drawn increasing interest. In this article, a new predictive model which can be valuable as a first approach for guiding experimental methods investigating protein-protein interactions and localizing the specific interface residues is proposed. The proposed method extracts a wide range of features from protein sequences. Random forests framework is newly redesigned to effectively utilize these features and the problems of imbalanced data classification commonly encountered in binding site predictions. The method is evaluated with 2,829 interface residues and 24,616 non-interface residues extracted from 99 polypeptide chains in the Protein Data Bank. The experimental results show that the proposed method performs significantly better than two other conventional predictive methods and can reliably predict residues involved in protein interaction sites. As blind tests, the proposed method predicts interaction sites and constructs three protein complexes: the DnaK molecular chaperone system, 1YUW and 1DKG, which provide new insight into the sequence-function relationship. Finally, the robustness of the proposed method is assessed by evaluating the performances obtained from four different ensemble methods

    Charaterization of 5-aminotetrazole (ATRA) as a corrosion inhibitor in copper chemical mechanical polishing

    Get PDF
    In the Cu metallization process, it is important to prevent corrosion and recession of metal lines resulting from chemical reactions during the chemical mechanical polishing CMP process. In this paper, 5-aminotetrazole ATRA is investigated as a corrosion inhibitor for Cu CMP. In the wet etch test, it was found that the etch rate of ATRA decreased with concentration. The potentiodynamic polarization test and chronoamperometry test results revealed that ATRA could inhibit the Cu surface against corrosion more effectively than benzotriazole BTA below 0.01 M. Fourier transform infrared and ultraviolet-visible analysis clearly demonstrated that ATRA dissociated more easily in all pH ranges and could be polymerized faster and more effectively than BTA. Therefore, both corrosion and recession could be considerably reduced after CMP by using slurry containing ATRA. Furthermore, from the results of defect review after CMP, it was found that defects such as slurry residue, pit corrosion, and particles were effectively prevented due to small molecular size and high solubility of ATRA

    Effects of education on low-phosphate diet and phosphate binder intake to control serum phosphate among maintenance hemodialysis patients: A randomized controlled trial.

    Get PDF
    Background:For phosphate control, patient education is essential due to the limited clearance of phosphate by dialysis. However, well-designed randomized controlled trials about dietary and phosphate binder education have been scarce. Methods:We enrolled maintenance hemodialysis patients and randomized them into an education group (n = 48) or a control group (n = 22). We assessed the patients' drug compliance and their knowledge about the phosphate binder using a questionnaire. Results:The primary goal was to increase the number of patients who reached a calcium-phosphorus product of lower than 55. In the education group, 36 (75.0%) patients achieved the primary goal, as compared with 16 (72.7%) in the control group (P = 0.430). The education increased the proportion of patients who properly took the phosphate binder (22.9% vs. 3.5%, P = 0.087), but not to statistical significance. Education did not affect the amount of dietary phosphate intake per body weight (education vs. control: -1.18 ± 3.54 vs. -0.88 ± 2.04 mg/kg, P = 0.851). However, the dietary phosphate-to-protein ratio tended to be lower in the education group (-0.64 ± 2.04 vs. 0.65 ± 3.55, P = 0.193). The education on phosphate restriction affected neither the Patient-Generated Subjective Global Assessment score (0.17 ± 4.58 vs. -0.86 ± 3.86, P = 0.363) nor the level of dietary protein intake (-0.03 ± 0.33 vs. -0.09 ± 0.18, P = 0.569). Conclusion:Education did not affect the calcium-phosphate product. Education on the proper timing of phosphate binder intake and the dietary phosphate-to-protein ratio showed marginal efficacy

    Beneficial Effect of 7- O

    Get PDF
    Traditional medicines are being focused on as possible treatments for diabetes and its complications because of their negligible toxic and/or side effects. In line with this, our group has reported that Corni Fructus, a traditional medicine considered exhibiting beneficial effects on liver and kidney functions, possessed an antidiabetic effect via ameliorating glucose-mediated metabolic disorders. To add to these findings, we screened the iridoid glycoside fraction containing morroniside and loganin, and low molecular weight polyphenol fraction containing 7-O-galloyl-d-sedoheptulose (GS) from Corni Fructus. To our knowledge, GS is a compound only detected in Corni Fructus, and its biological activity has been poorly understood until now. For these reasons, we examined whether GS has an ameliorative effect on diabetic changes using type 2 diabetic db/db mice. Our findings suggest that GS has a beneficial effect on the pathological state of the serum, kidney, and adipose tissue related to diabetic damage

    Clinical and Microbiologic Investigation of an Expedited Peri-implantitis Dog Model: An Animal Study

    Get PDF
    Background: Animal studies are pivotal in allowing experimentation to identify efficacious treatment protocols for resolution of peri-implantitis. The purpose of this investigation was to characterize an expedited dog peri-implantitis model clinically, radiographically, and microbiologically. Methods: Eight hound dogs underwent extractions (week 0) and implant (3.3 × 8.5 mm) placement with simultaneous surgical defect creation and ligature placement for induction of peri-implantitis (week 10). Ligatures were replaced at 6 weeks (week 16) and removed after 9 weeks (week 19) when supporting bone loss involved approximately 50% of the peri-implant bone. Microbial samples from the defects and healthy control implant sites collected at week 19 were analyzed utilizing a microarray. Clinical measures of inflammation were obtained and radiographic bone loss was measured from periapical radiographs. Radiographic depth and width measurements of bony defect were repeated at weeks 10 (baseline), 16, and 19. Canonical analysis of principal coordinates was used to visualize overall differences in microbial abundance between peri-implantitis and healthy implants. Results: This accelerated disease protocol led to intrabony defect creation with a mean depth and width of 4.3 mm and 3.5 mm, respectively after 9 weeks of ligature placement. Microbial identification revealed 59 total bacteria in peri-implant sites, 21 of which were only present in peri-implant sites as compared to healthy controls. Overall microbial beta diversity (microbial between-sample compositional diversity) differed between peri-implantitis and healthy implants (p = 0.009). Conclusions: Within the limitations of this study, this protocol led to expedited generation of peri-implant defects with a microbial profile indicative of a shift to disease and defect patterns conducive to regenerative treatment. However, the possibility of potential spontaneous resolution of lesions due to the lack of a chronicity interval as compared to chronic disease models need to be further clarified and considered during preclinical peri-implantitis model selection

    Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration

    Get PDF
    Background The in vivo kinetics of nanoparticles is an essential to understand the hazard of nanoparticles. Here, the absorption, distribution, and excretion patterns of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles following oral administration were evaluated. Methods Nanoparticles were orally administered to rats for 13 weeks (7 days/week). Samples of blood, tissues (liver, kidneys, spleen, and brain), urine, and feces were obtained at necropsy. The level of Ti or Zn in each sample was measured using inductively coupled plasma-mass spectrometry. Results TiO2 nanoparticles had extremely low absorption, while ZnO nanoparticles had higher absorption and a clear dose-response curve. Tissue distribution data showed that TiO2 nanoparticles were not significantly increased in sampled organs, even in the group receiving the highest dose (1041.5 mg/kg body weight). In contrast, Zn concentrations in the liver and kidney were significantly increased compared with the vehicle control. ZnO nanoparticles in the spleen and brain were minimally increased. Ti concentrations were not significantly increased in the urine, while Zn levels were significantly increased in the urine, again with a clear dose-response curve. Very high concentrations of Ti were detected in the feces, while much less Zn was detected in the feces. Conclusions Compared with TiO2 nanoparticles, ZnO nanoparticles demonstrated higher absorption and more extensive organ distribution when administered orally. The higher absorption of ZnO than TiO2 nanoparticles might be due to the higher dissolution rate in acidic gastric fluid, although more thorough studies are needed
    corecore