2 research outputs found

    2023 Astrophotonics Roadmap: pathways to realizing multi-functional integrated astrophotonic instruments

    Get PDF
    This is the final version. Available on open access from IOP Publishing via the DOI in this recordData availability statement: The data that support the findings of this study are available upon reasonable request from the authors.Photonic technologies offer numerous functionalities that can be used to realize astrophotonic instruments. The most spectacular example to date is the ESO Gravity instrument at the Very Large Telescope in Chile that combines the light-gathering power of four 8 m telescopes through a complex photonic interferometer. Fully integrated astrophotonic devices stand to offer critical advantages for instrument development, including extreme miniaturization when operating at the diffraction-limit, as well as integration, superior thermal and mechanical stabilization owing to the small footprint, and high replicability offering significant cost savings. Numerous astrophotonic technologies have been developed to address shortcomings of conventional instruments to date, including for example the development of photonic lanterns to convert from multimode inputs to single mode outputs, complex aperiodic fiber Bragg gratings to filter OH emission from the atmosphere, complex beam combiners to enable long baseline interferometry with for example, ESO Gravity, and laser frequency combs for high precision spectral calibration of spectrometers. Despite these successes, the facility implementation of photonic solutions in astronomical instrumentation is currently limited because of (1) low throughputs from coupling to fibers, coupling fibers to chips, propagation and bend losses, device losses, etc, (2) difficulties with scaling to large channel count devices needed for large bandwidths and high resolutions, and (3) efficient integration of photonics with detectors, to name a few. In this roadmap, we identify 24 key areas that need further development. We outline the challenges and advances needed across those areas covering design tools, simulation capabilities, fabrication processes, the need for entirely new components, integration and hybridization and the characterization of devices. To realize these advances the astrophotonics community will have to work cooperatively with industrial partners who have more advanced manufacturing capabilities. With the advances described herein, multi-functional integrated instruments will be realized leading to novel observing capabilities for both ground and space based platforms, enabling new scientific studies and discoveries.National Science Foundation (NSF)NAS

    Deep imaging search for planets forming in the TW Hya protoplanetary disk with the Keck/NIRC2 vortex coronagraph

    Get PDF
    Distinct gap features in the nearest protoplanetary disk, TW Hya (distance of 59.5±\pm0.9 pc), may be signposts of ongoing planet formation. We performed long-exposure thermal infrared coronagraphic imaging observations to search for accreting planets especially within dust gaps previously detected in scattered light and submm-wave thermal emission. Three nights of observations with the Keck/NIRC2 vortex coronagraph in LL^\prime (3.4-4.1μ\mum) did not reveal any statistically significant point sources. We thereby set strict upper limits on the masses of non-accreting planets. In the four most prominent disk gaps at 24, 41, 47, and 88 au, we obtain upper mass limits of 1.6-2.3, 1.1-1.6, 1.1-1.5, and 1.0-1.2 Jupiter masses (MJM_J) assuming an age range of 7-10 Myr for TW Hya. These limits correspond to the contrast at 95\% completeness (true positive fraction of 0.95) with a 1\% chance of a false positive within 11^{\prime\prime} of the star. We also approximate an upper limit on the product of planet mass and planetary accretion rate of MpM˙108MJ2/yrM_p\dot{M}\lesssim10^{-8} M_J^2/yr implying that any putative 0.1MJ\sim0.1 M_J planet, which could be responsible for opening the 24 au gap, is presently accreting at rates insufficient to build up a Jupiter mass within TW Hya's pre-main sequence lifetime.VORTE
    corecore