1,422 research outputs found

    Flexible operation of a mixed fluid cascade LNG plant for electrical power management

    Get PDF
    The paper discusses operation and control of a process for the liquefaction of natural gas in which the refrigeration compressors are driven by electric motors. The aim is to enable the plant to accommodate contingencies in the availability of electrical power and to continue running when there is a shortage of electrical power, avoiding the significant economic impact of a shutdown. The article provides a detailed first principles analysis of the relationships between the electrical power consumption of the process, the production rate of the liquefied natural gas, its exit temperature, and its purity. By doing this, it is possible to ascertain settings for operating the process at various levels of power consumption. The results show that the process can operate with reductions of electrical power of 30 percent or more. Hence, power shortages could be managed by operating the process flexibly to make best use of the available remaining power, rather than by shutting down. The paper also discusses how such a system could be implemented industrially and identifies aspects that require further study

    Estimates of the effect on hepatic iron of oral deferiprone compared with subcutaneous desferrioxamine for treatment of iron overload in thalassemia major: a systematic review

    Get PDF
    BACKGROUND: Beta thalassemia major requires regular blood transfusions and iron chelation to alleviate the harmful accumulation of iron. Evidence on the efficacy and safety of the available agents, desferrioxamine and deferiprone, is derived from small, non-comparative, heterogeneous observational studies. This evidence was reviewed to quantitatively compare the ability of these chelators to reduce hepatic iron. METHODS: The literature was searched using Medline and all reports addressing the effect of either chelator on hepatic iron were considered. Data were abstracted independently by two investigators. Analyses were performed using reported individual patient data. Hepatic iron concentrations at study end and changes over time were compared using ANCOVA, controlling for initial iron load. Differences in the proportions of patients improving were tested using χ(2). RESULTS: Eight of 11 reports identified provided patient-level data relating to 30 desferrioxamine- and 68 deferiprone-treated patients. Desferrioxamine was more likely than optimal dose deferiprone to decrease hepatic iron over the average follow-up of 45 months (odds ratio, 19.0, 95% CI, 2.4 to 151.4). The degree of improvement was also larger with desferrioxamine. CONCLUSIONS: This analysis suggests that desferrioxamine is more effective than deferiprone in lowering hepatic iron. This comparative analysis – despite its limitations – should prove beneficial to physicians faced with the challenge of selecting the optimal treatment for their patients

    Unbalanced Holographic Superconductors and Spintronics

    Get PDF
    We present a minimal holographic model for s-wave superconductivity with unbalanced Fermi mixtures, in 2+1 dimensions at strong coupling. The breaking of a U(1)_A "charge" symmetry is driven by a non-trivial profile for a charged scalar field in a charged asymptotically AdS_4 black hole. The chemical potential imbalance is implemented by turning on the temporal component of a U(1)_B "spin" field under which the scalar field is uncharged. We study the phase diagram of the model and comment on the eventual (non) occurrence of LOFF-like inhomogeneous superconducting phases. Moreover, we study "charge" and "spin" transport, implementing a holographic realization (and a generalization thereof to superconducting setups) of Mott's two-current model which provides the theoretical basis of modern spintronics. Finally we comment on possible string or M-theory embeddings of our model and its higher dimensional generalizations, within consistent Kaluza-Klein truncations and brane-anti brane setups.Comment: 45 pages, 15 figures; v2: two paragraphs below eq. (3.1) slightly modified, figure 5 (left) replaced, references added; v3: typos corrected, comments added, figure 12 replace

    Iron chelation therapy in the myelodysplastic syndromes and aplastic anemia: a review of experience in South Korea

    Get PDF
    Emerging clinical data indicate that transfusion-dependent patients with bone marrow-failure syndromes (BMFS) are at risk of the consequences of iron overload, including progressive damage to hepatic, endocrine, and cardiac organs. Despite the availability of deferoxamine (DFO) in Korea since 1998, data from patients with myelodysplastic syndromes, aplastic anemia, and other BMFS show significant iron overload and damage to the heart and liver. The recent introduction of deferasirox, a once-daily, oral iron chelator, may improve the availability of iron chelation therapy to iron-overloaded patients, and improve compliance in patients who may otherwise find adherence to the DFO regimen difficult

    Body iron metabolism and pathophysiology of iron overload

    Get PDF
    Iron is an essential metal for the body, while excess iron accumulation causes organ dysfunction through the production of reactive oxygen species. There is a sophisticated balance of body iron metabolism of storage and transport, which is regulated by several factors including the newly identified peptide hepcidin. As there is no passive excretory mechanism of iron, iron is easily accumulated when exogenous iron is loaded by hereditary factors, repeated transfusions, and other diseased conditions. The free irons, non-transferrin-bound iron, and labile plasma iron in the circulation, and the labile iron pool within the cells, are responsible for iron toxicity. The characteristic features of advanced iron overload are failure of vital organs such as liver and heart in addition to endocrine dysfunctions. For the estimation of body iron, there are direct and indirect methods available. Serum ferritin is the most convenient and widely available modality, even though its specificity is sometimes problematic. Recently, new physical detection methods using magnetic resonance imaging and superconducting quantum interference devices have become available to estimate iron concentration in liver and myocardium. The widely used application of iron chelators with high compliance will resolve the problems of organ dysfunction by excess iron and improve patient outcomes

    Identification of ChIP-seq mapped targets of HP1β due to bombesin/GRP receptor activation

    Get PDF
    Epithelial cells lining the adult colon do not normally express gastrin-releasing peptide (GRP) or its receptor (GRPR). In contrast, GRP/GRPR can be aberrantly expressed in human colorectal cancer (CRC) including Caco-2 cells. We have previously shown that GRPR activation results in the up-regulation of HP1β, an epigenetic modifier of gene transcription. The aim of this study was to identify the genes whose expression is altered by HP1β subsequent to GRPR activation. We determined HP1β binding positions throughout the genome using chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq). After exposure to GRP, we identified 9,625 genomic positions occupied by HP1β. We performed gene microarray analysis on Caco-2 cells in the absence and presence of a GRPR specific antagonist as well as siRNA to HP1β. The expression of 97 genes was altered subsequent to GRPR antagonism, while the expression of 473 genes was altered by HP1β siRNA exposure. When these data were evaluated in concert with our ChIP-seq findings, 9 genes showed evidence of possible altered expression as a function of GRPR signaling via HP1β. Of these, genomic PCR of immunoprecipitated chromatin demonstrated that GRPR signaling affected the expression of IL1RAPL2, FAM13A, GBE1, PLK3, and SLCO1B3. These findings provide the first evidence by which GRPR aberrantly expressed in CRC might affect tumor progression

    Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors

    Get PDF
    Intestinal cells are constantly produced from a stem cell reservoir that gives rise to proliferating transient amplifying cells, which subsequently differentiate into one of the four principal cell types. Signalling pathways, including the Notch signalling pathway, coordinate these differentiation processes and their deregulation may cause cancer. Pharmacological inhibition through γ-secretase inhibitors or genetic inactivation of the Notch signalling pathway results in the complete loss of proliferating crypt progenitors due to their conversion into post-mitotic goblet cells. The basic helix–loop–helix transcription factor Math1 is essential for intestinal secretory cell differentiation. Because of the critical roles of both Math1 and Notch signalling in intestinal homeostasis and neoplastic transformation, we sought to determine the genetic hierarchy regulating the differentiation of intestinal stem cells into secretory cells. In this paper, we demonstrate that the conversion of intestinal stem cells into goblet cells upon inhibition of the Notch signalling pathway requires Math1

    Genetic analysis of the naked trait in panicles of hexaploid oat

    Get PDF
    The aim of this study was to estimate the number of genes that control the naked (hull-less) trait and the mode of expression of this characteristic in panicles of hexaploid white oat. Parents and the segregating population (in the F2 and F3 generations) were evaluated in regard to the presence and distribution of naked grains in panicles of individual oat plants. For each plant, a drawing of the main panicle was developed. From the drawings obtained in the progenies of the F2 population, six distinct phenotypic classes were produced. The expected phenotypic proportion of 3:9:4 (naked:segregating:hulled) was that which best fit by the Chi-square test. In the F3 generation, the results showed agreement with the hypothesis observed in the F2 generation. The naked trait in oat is passed on by two genes and the greatest expression of this trait occurs in the upper third of the panicles. Expression of this trait in oats is not complete, even in homozygous genotypes

    Proposal for a method to estimate nutrient shock effects in bacteria

    Get PDF
    Plating methods are still the golden standard in microbiology; however, some studies have shown that these techniques can underestimate the microbial concentrations and diversity. A nutrient shock is one of the mechanisms proposed to explain this phenomenon. In this study, a tentative method to assess nutrient shock effects was tested. Findings To estimate the extent of nutrient shock effects, two strains isolated from tap water (Sphingomonas capsulata and Methylobacterium sp.) and two culture collection strains (E. coli CECT 434 and Pseudomonas fluorescens ATCC 13525) were exposed both to low and high nutrient conditions for different times and then placed in low nutrient medium (R2A) and rich nutrient medium (TSA). The average improvement (A.I.) of recovery between R2A and TSA for the different times was calculated to more simply assess the difference obtained in culturability between each medium. As expected, A.I. was higher when cells were plated after the exposition to water than when they were recovered from high-nutrient medium showing the existence of a nutrient shock for the diverse bacteria used. S. capsulata was the species most affected by this phenomenon. This work provides a method to consistently determine the extent of nutrient shock effects on different microorganisms and hence quantify the ability of each species to deal with sudden increases in substrate concentration. <br/

    The Putative Liquid-Liquid Transition is a Liquid-Solid Transition in Atomistic Models of Water

    Full text link
    We use numerical simulation to examine the possibility of a reversible liquid-liquid transition in supercooled water and related systems. In particular, for two atomistic models of water, we have computed free energies as functions of multiple order parameters, where one is density and another distinguishes crystal from liquid. For a range of temperatures and pressures, separate free energy basins for liquid and crystal are found, conditions of phase coexistence between these phases are demonstrated, and time scales for equilibration are determined. We find that at no range of temperatures and pressures is there more than a single liquid basin, even at conditions where amorphous behavior is unstable with respect to the crystal. We find a similar result for a related model of silicon. This result excludes the possibility of the proposed liquid-liquid critical point for the models we have studied. Further, we argue that behaviors others have attributed to a liquid-liquid transition in water and related systems are in fact reflections of transitions between liquid and crystal
    corecore