47,533 research outputs found

    Circumstellar Disks Around Binary Stars in Taurus

    Get PDF
    We have conducted a survey of 17 wide (> 100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and ten secondaries, with disk masses as low as 104M10^{-4} M_{\odot}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of FmmM1.52.0F_{mm} \propto M_{\ast}^{1.5-2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.Comment: To appear in the Astrophysical Journal, 12 page

    Hybrid Propulsion Technology Program

    Get PDF
    Future launch systems of the United States will require improvements in booster safety, reliability, and cost. In order to increase payload capabilities, performance improvements are also desirable. The hybrid rocket motor (HRM) offers the potential for improvements in all of these areas. The designs are presented for two sizes of hybrid boosters, a large 4.57 m (180 in.) diameter booster duplicating the Advanced Solid Rocket Motor (ASRM) vacuum thrust-time profile and smaller 2.44 m (96 in.), one-quater thrust level booster. The large booster would be used in tandem, while eight small boosters would be used to achieve the same total thrust. These preliminary designs were generated as part of the NASA Hybrid Propulsion Technology Program. This program is the first phase of an eventual three-phaes program culminating in the demonstration of a large subscale engine. The initial trade and sizing studies resulted in preferred motor diameters, operating pressures, nozzle geometry, and fuel grain systems for both the large and small boosters. The data were then used for specific performance predictions in terms of payload and the definition and selection of the requirements for the major components: the oxidizer feed system, nozzle, and thrust vector system. All of the parametric studies were performed using realistic fuel regression models based upon specific experimental data

    Strategic management of nitrogen within an organic cropping system using digestate from biogas production of recirculated crop residues

    Get PDF
    This project investigates strategic management of nitrogen by integrating crop residue management with biogas production. The approach offers potential for diversified farmer income, as food crops, feedstock for biogas and digestate for nutrient cycling are produced simultaneously. This type of diversification provides multifunctional solutions in organic farming, especially in production without access to animal manure. Biogas production from crop residues offers the possibility of reducing both emissions and leaching of nutrients to the surrounding ecosystems, as compared to the case where crop residue is incorporated into the soil for decomposition (Baggs et al. 2000; Velthof et al. 2002). This type of multifunctional cropping system provides solutions that can also help to solve issues on conventional farms, such as N emissions, and can also provide local production of biogas

    A parallel algorithm for the enumeration of benzenoid hydrocarbons

    Full text link
    We present an improved parallel algorithm for the enumeration of fixed benzenoids B_h containing h hexagonal cells. We can thus extend the enumeration of B_h from the previous best h=35 up to h=50. Analysis of the associated generating function confirms to a very high degree of certainty that BhAκh/hB_h \sim A \kappa^h /h and we estimate that the growth constant κ=5.161930154(8)\kappa = 5.161930154(8) and the amplitude A=0.2808499(1)A=0.2808499(1).Comment: 14 pages, 6 figure

    Local and global instabilities of flow in a flexible-walled channel

    Get PDF
    We consider laminar high-Reynolds-number flow through a long finite-length planar channel, where a segment of one wall is replaced by a massless membrane held under longitudinal tension. The flow is driven by a fixed pressure difference across the channel and is described using an integral form of the unsteady boundary-layer equations. The basic flow state, for which the channel has uniform width, exhibits static and oscillatory global instabilities, having distinct modal forms. In contrast, the corresponding local problem (neglecting boundary conditions associated with the rigid parts of the system) is found to be convectively, but not absolutely, unstable to small-amplitude disturbances in the absence of wall damping. We show how amplification of the primary global oscillatory instability can arise entirely from wave reflections with the rigid parts of the system, involving interacting travelling wave flutter and static-divergence modes that are convectively stable; alteration of the mean flow by oscillations makes the onset of this primary instability subcritical. We also show how distinct mechanisms of energy transfer differentiate the primary global mode from other modes of oscillatory instability

    Honeycomb lattice polygons and walks as a test of series analysis techniques

    Full text link
    We have calculated long series expansions for self-avoiding walks and polygons on the honeycomb lattice, including series for metric properties such as mean-squared radius of gyration as well as series for moments of the area-distribution for polygons. Analysis of the series yields accurate estimates for the connective constant, critical exponents and amplitudes of honeycomb self-avoiding walks and polygons. The results from the numerical analysis agree to a high degree of accuracy with theoretical predictions for these quantities.Comment: 16 pages, 9 figures, jpconf style files. Presented at the conference "Counting Complexity: An international workshop on statistical mechanics and combinatorics." In celebration of Prof. Tony Guttmann's 60th birthda

    More Holographic Berezinskii-Kosterlitz-Thouless Transitions

    Full text link
    We find two systems via holography that exhibit quantum Berezinskii-Kosterlitz-Thouless (BKT) phase transitions. The first is the ABJM theory with flavor and the second is a flavored (1,1) little string theory. In each case the transition occurs at nonzero density and magnetic field. The BKT transition in the little string theory is the first example of a quantum BKT transition in (3+1) dimensions. As in the "original" holographic BKT transition in the D3/D5 system, the exponential scaling is destroyed at any nonzero temperature and the transition becomes second order. Along the way we construct holographic renormalization for probe branes in the ABJM theory and propose a scheme for the little string theory. Finally, we obtain the embeddings and (half of) the meson spectrum in the ABJM theory with massive flavor.Comment: 24 pages, 5 figure

    Nutrient availability affects carbon turnover and microbial physiology differently in topsoil and subsoil under a temperate grassland

    Get PDF
    Increasing subsoil organic carbon inputs could potentially mitigate climate change by sequestering atmospheric CO2. Yet, microbial turnover and stabilization of labile carbon in subsoils are regulated by complex mechanisms including the availability of nitrogen (N), phosphorous (P), and sulfur (S). The present study mimicked labile organic carbon input using a versatile substrate (i.e. glucose) to address the interaction between carbon-induced mineralization, N-P-S availability, and microbial physiology in topsoil and subsoils from a temperate agricultural sandy loam soil. A factorial incubation study (42 days) showed that net losses of added carbon in topsoil were constant, whereas carbon losses in subsoils varied according to nutrient treatments. Glucose added to subsoil in combination with N was fully depleted, whereas glucose added alone or in combination with P and S was only partly depleted, and remarkably 59–92% of the added glucose was recovered after the incubation. This showed that N limitation largely controlled carbon turnover in the subsoil, which was also reflected by microbial processes where addition of glucose and N increased β-glucosidase activity, which was positively correlated to the maximum CO2 production rate during incubation. The importance of N limitation was substantiated by subsoil profiles of carbon source utilization, where microbial metabolic diversity was mainly related to the absence or presence of added N. Overall, the results documented that labile carbon turnover and microbial functions in a temperate agricultural subsoil was controlled to a large extent by N availability. Effects of glucoseinduced microbial activity on subsoil physical properties remained ambiguous due to apparent chemical effects of N (nitrate) on clay dispersibility

    Tunable effective g-factor in InAs nanowire quantum dots

    Full text link
    We report tunneling spectroscopy measurements of the Zeeman spin splitting in InAs few-electron quantum dots. The dots are formed between two InP barriers in InAs nanowires with a wurtzite crystal structure grown by chemical beam epitaxy. The values of the electron g-factors of the first few electrons entering the dot are found to strongly depend on dot size and range from close to the InAs bulk value in large dots |g^*|=13 down to |g^*|=2.3 for the smallest dots. These findings are discussed in view of a simple model.Comment: 4 pages, 3 figure
    corecore