22,782 research outputs found
Optical density and velocity measurements in cryogenic gas flows
This paper presents the application of optical measurement techniques in dense-gas flows in a heavy-gas channel to determine planar two-component (2C) velocity profiles and two-dimensional (2D) temperature profiles. The experimental approach is rather new in this area, and represents progress compared with the traditional techniques based on thermocouple measurements. The dense-gas flows are generated by the evaporation of liquid nitrogen. The optical measurement of both the velocity and density profiles is accomplished by the implementation of particle image velocimetry (PIV) and background-oriented schlieren (BOS) systems. Supplemental thermocouple measurements are used as independent calibrations to derive temperatures from the density data measured with the BOS system. The results obtained with both systems are used to quantify the dilution behavior of the propagating cloud through a global entrainment parameter β. Its value agrees well with the results obtained by earlier studie
Stability and structure of two coupled boson systems in an external field
The lowest adiabatic potential expressed in hyperspherical coordinates is
estimated for two boson systems in an external harmonic trap. Corresponding
conditions for stability are investigated and the related structures are
extracted for zero-range interactions. Strong repulsion between non-identical
particles leads to two new features, respectively when identical particles
attract or repel each other. For repulsion new stable structures arise with
displaced center of masses. For attraction the mean-field stability region is
restricted due to motion of the center of masses
Layer Features of the Lattice Gas Model for Self-Organized Criticality
A layer-by-layer description of the asymmetric lattice gas model for
1/f-noise suggested by Jensen [Phys. Rev. Lett. 64, 3103 (1990)] is presented.
The power spectra of the lattice layers in the direction perpendicular to the
particle flux is studied in order to understand how the white noise at the
input boundary evolves, on the average, into 1/f-noise for the system. The
effects of high boundary drive and uniform driving force on the power spectrum
of the total number of diffusing particles are considered. In the case of
nearest-neighbor particle interactions, high statistics simulation results show
that the power spectra of single lattice layers are characterized by different
exponents such that as one approaches the outer
boundary.Comment: LaTeX, figures upon reques
The Central Regions of M31 in the 3 - 5 micron Wavelength Region
Images obtained with NIRI on the Gemini North telescope are used to
investigate the photometric properties of the central regions of M31 in the 3 -
5 micron wavelength range. The light distribution in the central arcsecond
differs from what is seen in the near-infrared in the sense that the difference
in peak brigh tness between P1 and P2 is larger in M' than in K'; no obvious
signature of P3 is dete cted in M'. These results can be explained if there is
a source of emission that contributes ~ 20% of the peak M' light of P1 and has
an effective temperature of no more than a few hundred K that is located
between P1 and P2. Based on the red K-M' color of this source, it is suggested
that the emission originates in a circumstellar dust shell surrounding a single
bright AGB star. A similar bright source that is ~ 8 arcsec from the center of
the galaxy is also detected in M'. Finally, the (L', K-L') color-magnitude
diagram of unblended stars shows a domin ant AGB population with photometric
characteristics that are similar to those of the most luminous M giants in the
Galactic bulge.Comment: To appear in the Astronomical Journa
Systematic trends in beta-delayed particle emitting nuclei: The case of beta-p-alpha emission from 21Mg
We have observed beta+-delayed alpha and p-alpha emission from the
proton-rich nucleus 21Mg produced at the ISOLDE facility at CERN. The
assignments were cross-checked with a time distribution analysis. This is the
third identified case of beta-p-alpha emission. We discuss the systematic of
beta-delayed particle emission decays, show that our observed decays fit
naturally into the existing pattern, and argue that the patterns are to a large
extent caused by odd-even effects.Comment: 6 pages, 5 figure
Computation of local exchange coefficients in strongly interacting one-dimensional few-body systems: local density approximation and exact results
One-dimensional multi-component Fermi or Bose systems with strong zero-range
interactions can be described in terms of local exchange coefficients and
mapping the problem into a spin model is thus possible. For arbitrary external
confining potentials the local exchanges are given by highly non-trivial
geometric factors that depend solely on the geometry of the confinement through
the single-particle eigenstates of the external potential. To obtain accurate
effective Hamiltonians to describe such systems one needs to be able to compute
these geometric factors with high precision which is difficult due to the
computational complexity of the high-dimensional integrals involved. An
approach using the local density approximation would therefore be a most
welcome approximation due to its simplicity. Here we assess the accuracy of the
local density approximation by going beyond the simple harmonic oscillator that
has been the focus of previous studies and consider some double-wells of
current experimental interest. We find that the local density approximation
works quite well as long as the potentials resemble harmonic wells but break
down for larger barriers. In order to explore the consequences of applying the
local density approximation in a concrete setup we consider quantum state
transfer in the effective spin models that one obtains. Here we find that even
minute deviations in the local exchange coefficients between the exact and the
local density approximation can induce large deviations in the fidelity of
state transfer for four, five, and six particles.Comment: 12 pages, 7 figures, 1 table, final versio
Scaling prediction for self-avoiding polygons revisited
We analyse new exact enumeration data for self-avoiding polygons, counted by
perimeter and area on the square, triangular and hexagonal lattices. In
extending earlier analyses, we focus on the perimeter moments in the vicinity
of the bicritical point. We also consider the shape of the critical curve near
the bicritical point, which describes the crossover to the branched polymer
phase. Our recently conjectured expression for the scaling function of rooted
self-avoiding polygons is further supported. For (unrooted) self-avoiding
polygons, the analysis reveals the presence of an additional additive term with
a new universal amplitude. We conjecture the exact value of this amplitude.Comment: 17 pages, 3 figure
Area distribution of the planar random loop boundary
We numerically investigate the area statistics of the outer boundary of
planar random loops, on the square and triangular lattices. Our Monte Carlo
simulations suggest that the underlying limit distribution is the Airy
distribution, which was recently found to appear also as area distribution in
the model of self-avoiding loops.Comment: 10 pages, 2 figures. v2: minor changes, version as publishe
- …