24 research outputs found

    Enabling Molecular-Level Computational Description of Redox and Proton-Coupled Electron Transfer Reactions of Samarium Diiodide

    Get PDF
    Samarium diiodide (SmI2, Kagan’s reagent) is a one-electron reductant with applications ranging from organic synthesis to nitrogen fixation. Highly inaccurate relative energies of redox and proton-coupled electron transfer (PCET) reactions of Kagan’s reagent are predicted by pure and hybrid density functional approximations (DFAs) when only scalar relativistic effects are accounted for. Calculations including spin–orbit coupling (SOC) show that the SOC-induced differential stabilization of the Sm(III) versus the Sm(II) ground state is little affected by ligands and solvent, and a standard SOC correction derived from atomic energy levels is thus included in the reported relative energies. With this correction, selected meta-GGA and hybrid meta-GGA functionals predict Sm(III)/Sm(II) reduction free energies to within 5 kcal/mol of the experiment. Considerable discrepancies remain, however, in particular for the PCET-relevant O–H bond dissociation free energies, for which no regular DFA is within 10 kcal/mol of the experiment or CCSD(T). The main cause behind these discrepancies is the delocalization error, which leads to excess ligand-to-metal electron donation and destabilizes Sm(III) versus Sm(II). Fortunately, static correlation is unimportant for the present systems, and the error may be reduced by including information from virtual orbitals via perturbation theory. Contemporary, parametrized double-hybrid methods offer promise as companions to experimental campaigns in the further development of the chemistry of Kagan’s reagent.publishedVersio

    Automated in Silico Design of Homogeneous Catalysts

    Get PDF
    Catalyst discovery is increasingly relying on computational chemistry, and many of the computational tools are currently being automated. The state of this automation and the degree to which it may contribute to speeding up development of catalysts are the subject of this Perspective. We also consider the main challenges associated with automated catalyst design, in particular the generation of promising and chemically realistic candidates, the tradeoff between accuracy and cost in estimating the catalytic performance, the opportunities associated with automated generation and use of large amounts of data, and even how to define the objectives of catalyst design. Throughout the Perspective, we take a cross-disciplinary approach and evaluate the potential of methods and experiences from fields other than homogeneous catalysis. Finally, we provide an overview of software packages available for automated in silico design of homogeneous catalysts.publishedVersio

    DENOPTIM: Software for Computational de Novo Design of Organic and Inorganic Molecules

    Get PDF
    A general-purpose software package, termed DE Novo OPTimization of In/organic Molecules (DENOPTIM), for de novo design and virtual screening of functional molecules is described. Molecules of any element and kind, including metastable species and transition states, are handled as chemical objects that go beyond valence-rules representations. Synthetic accessibility of the generated molecules is ensured via detailed control of the kinds of bonds that are allowed to form in the automated molecular building process. DENOPTIM contains a combinatorial explorer for screening and a genetic algorithm for global optimization of user-defined properties. Estimates of these properties may be obtained to form the fitness function (figure of merit or scoring function) from external molecular modeling programs via shell scripts. Examples of a range of different fitness functions and DENOPTIM applications, including an easy-to-do test case, are described. DENOPTIM is available as Open Source from https://github.com/denoptim-project/DENOPTIM.acceptedVersio

    Pyridine-Stabilized Fast-Initiating Ruthenium Monothiolate Catalysts for Z-Selective Olefin Metathesis

    Get PDF
    Pyridine as a stabilizing donor ligand drastically improves the performance of ruthenium monothiolate catalysts for olefin metathesis in comparison with previous versions based on a stabilizing benzylidene ether ligand. The new pyridine-stabilized ruthenium alkylidenes undergo fast initiation and reach appreciable yields combined with moderate to high Z selectivity in self-metathesis of terminal olefins after only a few minutes at room temperature. Moreover, they can be used with a variety of substrates, including acids, and promote self-metathesis of ω-alkenoic acids. The pyridine-stabilized ruthenium monothiolate catalysts are also efficient at the high substrate dilutions of macrocylic ring-closing metathesis and resist temperatures above 100 °C during catalysis.publishedVersio

    Phosphine-Based Z‑Selective Ruthenium Olefin Metathesis Catalysts

    Get PDF
    Whereas a number of highly Z-selective ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands have been reported in recent years, Zselectivity has so far been difficult to achieve for phosphinebased catalysts. Guided by predictive density functional theory (DFT) calculations, we have developed phosphine-based ruthenium olefin metathesis catalysts giving 70−95% of the Zisomer product in homocoupling of terminal alkenes such as allylbenzene, 1-octene, allyl acetate, and 2-allyloxyethanol. Starting from a moderately selective catalyst, [P(Cy)3](-S-2,4,6-Ph-C6H2)ClRu(==CH-o-OiPrC6H4) (4, Cy = cyclohexyl, iPr = isopropyl), obtained by substituting a chloride of the Hoveyda−Grubbs first-generation catalyst with 2,4,6- triphenylbenzenethiolate, we moved on to replace Cl and PCy3 by chelating, anionic phosphine ligands. Such ligands increase selectivity by limiting rotation around the P−Ru bond and by specifically directing the steric bulk of the phosphine substituents toward the selectivity-inducing thiolate ligand. In particular, DFT calculations predicted that o-(dialkylphosphino)phenolate ligands should improve selectivity and activity compared to 4. The most promising of these compounds (8b), based on the o-(ditert- butylphosphino)phenolate ligand, directs the two P-bonded tert-butyl substituents toward the 2,4,6-triphenylbenzenethiolate and has little steric hindrance trans to the thiolate. This compound metathesizes terminal olefins such as allylbenzene and 1- octene with Z-selectivities above 80% and allylacetate above 90%. Although these phosphine-based ruthenium monothiolate catalysts in general achieve somewhat lower activities and Z-selectivities than their second-generation counterparts, they also offer examples giving less substrate and product isomerization and thus higher yields.publishedVersio

    The Janus face of high trans-effect carbenes in olefin metathesis: gateway to both productivity and decomposition

    Get PDF
    Ruthenium–cyclic(alkyl)(amino)carbene (CAAC) catalysts, used at ppm levels, can enable dramatically higher productivities in olefin metathesis than their N-heterocyclic carbene (NHC) predecessors. A key reason is the reduced susceptibility of the metallacyclobutane (MCB) intermediate to decomposition via ÎČ-H elimination. The factors responsible for promoting or inhibiting ÎČ-H elimination are explored via density functional theory (DFT) calculations, in metathesis of ethylene or styrene (a representative 1-olefin) by Ru–CAAC and Ru–NHC catalysts. Natural bond orbital analysis of the frontier orbitals confirms the greater strength of the orbital interactions for the CAAC species, and the consequent increase in the carbene trans influence and trans effect. The higher trans effect of the CAAC ligands inhibits ÎČ-H elimination by destabilizing the transition state (TS) for decomposition, in which an agostic MCB CÎČ–H bond is positioned trans to the carbene. Unproductive cycling with ethylene is also curbed, because ethylene is trans to the carbene ligand in the square pyramidal TS for ethylene metathesis. In contrast, metathesis of styrene proceeds via a ‘late’ TS with approximately trigonal bipyramidal geometry, in which carbene trans effects are reduced. Importantly, however, the positive impact of a strong trans-effect ligand in limiting ÎČ-H elimination is offset by its potent accelerating effect on bimolecular coupling, a major competing means of catalyst decomposition. These two decomposition pathways, known for decades to limit productivity in olefin metathesis, are revealed as distinct, antinomic, responses to a single underlying phenomenon. Reconciling these opposing effects emerges as a clear priority for design of robust, high-performing catalysts.publishedVersio

    Bimolecular Coupling in Olefin Metathesis: Correlating Structure and Decomposition for Leading and Emerging Ruthenium−Carbene Catalysts

    Get PDF
    Bimolecular catalyst decomposition is a fundamental, long-standing challenge in olefin metathesis. Emerging ruthenium–cyclic(alkyl)(amino)carbene (CAAC) catalysts, which enable breakthrough advances in productivity and general robustness, are now known to be extraordinarily susceptible to this pathway. The details of the process, however, have hitherto been obscure. The present study provides the first detailed mechanistic insights into the steric and electronic factors that govern bimolecular decomposition. Described is a combined experimental and theoretical study that probes decomposition of the key active species, RuCl2(L)(py)(═CH2) 1 (in which L is the N-heterocyclic carbene (NHC) H2IMes, or a CAAC ligand: the latter vary in the NAr group (NMes, N-2,6-Et2C6H3, or N-2-Me,6-iPrC6H3) and the substituents on the quaternary site flanking the carbene carbon (i.e., CMe2 or CMePh)). The transiently stabilized pyridine adducts 1 were isolated by cryogenic synthesis of the metallacyclobutanes, addition of pyridine, and precipitation. All are shown to decompose via second-order kinetics at −10 °C. The most vulnerable CAAC species, however, decompose more than 1000-fold faster than the H2IMes analogue. Computational studies reveal that the key factor underlying accelerated decomposition of the CAAC derivatives is their stronger trans influence, which weakens the Ru−py bond and increases the transient concentration of the 14-electron methylidene species, RuCl2(L)(═CH2) 2. Fast catalyst initiation, a major design goal in olefin metathesis, thus has the negative consequence of accelerating decomposition. Inhibiting bimolecular decomposition offers major opportunities to transform catalyst productivity and utility, and to realize the outstanding promise of olefin metathesis.publishedVersio

    Mesomeric Acceleration Counters Slow Initiation of Ruthenium-CAAC Catalysts for Olefin Metathesis (CAAC = Cyclic (Alkyl)(Amino) Carbene)

    Get PDF
    Ruthenium catalysts bearing cyclic (alkyl)(amino)carbene (CAAC) ligands can attain very high productivities in olefin metathesis, owing to their resistance to unimolecular decomposition. Because the propagating methylidene species RuCl2(CAAC)(═CH2) is extremely susceptible to bimolecular decomposition, however, turnover numbers in the metathesis of terminal olefins are highly sensitive to catalyst concentration, and hence loadings. Understanding how, why, and how rapidly the CAAC complexes partition between the precatalyst and the active species is thus critical. Examined in a dual experimental–computational study are the rates and basis of initiation for phosphine-free catalysts containing the leading CAAC ligand C1Ph, in which a CMePh group α to the carbene carbon helps retard degradation. The Hoveyda-class complex HC1Ph (RuCl2(L)(═CHAr), where L = C1Ph, Ar = C6H3-2-OiPr-5-R; R = H) is compared with its nitro-Grela analogue (nG-C1Ph; R = NO2) and the classic Hoveyda catalyst HII (L = H2IMes; R = H). t-Butyl vinyl ether (tBuVE) was employed as substrate, to probe the reactivity of these catalysts toward olefins of realistic bulk. Initiation is ca. 100× slower for HC1Ph than HII in C6D6, or 44× slower in CDCl3. The rate-limiting step for the CAAC catalyst is cycloaddition; for HII, it is tBuVE binding. Initiation is 10–13× faster for nG-C1Ph than HC1Ph in either solvent. DFT analysis reveals that this rate acceleration originates in an overlooked role of the nitro group. Rather than weakening the Ru–ether bond, as widely presumed, the NO2 group accelerates the ensuing, rate-limiting cycloaddition step. Faster reaction is caused by long-range mesomeric effects that modulate key bond orders and Ru-ligand distances, and thereby reduce the trans effect between the carbene and the trans-bound alkene in the transition state for cycloaddition. Mesomeric acceleration may plausibly be introduced via any of the ligands present, and hence offers a powerful, tunable control element for catalyst design.publishedVersio

    Z-Selective Monothiolate Ruthenium Indenylidene Olefin Metathesis Catalysts

    Get PDF
    Ru-alkylidenes bearing sterically demanding arylthiolate ligands (SAr) constitute one of only two classes of catalyst that are Z-selective in metathesis of 1-alkenes. Of particular interest are complexes bearing pyridine as a stabilizing donor ligand, [RuCl(SAr)(═CHR)(NHC)(py)] (R = phenyl or 2-thienyl, NHC = N-heterocyclic carbene, py = pyridine), which initiate catalysis rapidly and give appreciable yields combined with moderate to high Z-selectivity within minutes at room temperature. Here, we extend this chemistry by synthesizing and testing the first two such complexes (5a and 5b) bearing 3-phenylindenylidene, a ligand known to promote stability in other ruthenium-based olefin metathesis catalysts. The steric pressure resulting from the three bulky ligands (the NHC, the arylthiolate, and the indenylidene) forces the thiolate ligand to position itself trans to the NHC ligand, a configuration different from that of the corresponding alkylidenes. Surprisingly, although this configuration is incompatible with Z-selectivity and slows down pyridine dissociation, the two new complexes initiate readily at room temperature. Although their thermal stability is lower than that of typical indenylidene-bearing catalysts, 5a and 5b are fairly stable in catalysis (TONs up to 2200) and offer up to ca. 80% of the Z-isomer in prototypical metathesis homocoupling reactions. Density functional theory (DFT) calculations confirm the energetic cost of dissociating pyridine from 5a (= M1-Py) to generate 14-electron complex M1. Whereas the latter isomer does not give a metathesis-potent allylbenzene π-complex, it may isomerize to M1-trans and M2, which both form π-complexes in which the olefin is correctly oriented for cycloaddition. The olefin orientation in these complexes is also indicative of Z-selectivity.publishedVersio

    Silica-supported Z-selective Ru olefin metathesis catalysts

    Get PDF
    Under embargo until: 2022-01-17Recently reported thiolate-coordinated ruthenium alkylidene complexes show promise in Z-selective and stereoretentive olefin metathesis reactions. Herein we describe the immobilization of three Ru complexes containing a bulky aryl thiolate on mesostructured silica via surface organometallic chemistry. The applied methodology gives isolated catalytic sites homogeneously distributed on the silica surface. The catalytic results with two model substrates show comparable Z-selectivities to those of the homogeneous counterparts.acceptedVersio
    corecore