38,498 research outputs found

    Solar engine

    Get PDF
    A solar engine is disclosed in which a fluid, which is first heated and then cooled, forces a piston outward as the fluid is heated, and then draws the piston inward as the fluid is cooled. The piston is connected to a shaft and produces work as it moves outward and inward. A displacer plate moves between an absorber plate and a cooling plate to form an air space between the displacer and one or the other of these two plates for heating and cooling the fluid. The displacer plate is moved from one plate to the other by the displacer push ring as the piston nears the midpoint of its travel on the outward stroke and again on the inward stroke

    Solar heating system

    Get PDF
    A system is disclosed for using solar energy to heat the interior of a structure. The system utilizes a low cost solar collector to heat a recirculating air mass which then flows through a series of interconnected ducts and passageways without the use of exterior fans or blowers. Heat is transferred from the air mass to the structure's interior and the air mass is then reheated

    Combined solar collector and energy storage system

    Get PDF
    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation

    Performance evaluation of the Solar Building Test Facility

    Get PDF
    The general performance of the NASA Solar Building Test Facility (SBTF) and its subsystems and components over a four year operational period is discussed, and data are provided for a typical one year period. The facility consists of a 4645 sq office building modified to accept solar heated water for operation of an absorption air conditioner and a baseboard heating system. An adjoining 1176 sq solar flat plate collector field with a 114 cu tank provides the solar heated water. The solar system provided 57 percent of the energy required for heating and cooling on an annual basis. The average efficiency of the solar collectors was 26 percent over a one year period

    Design of an energy conservation building

    Get PDF
    The concepts in designing and predicting energy consumption in a low energy use building are summarized. The building will use less than 30,000 Btu/sq.ft./yr. of boarder energy. The building's primary energy conservation features include heavy concrete walls with external insulation, a highly insulated ceiling, and large amounts of glass for natural lighting. A solar collector air system is integrated into the south wall. Calculations for energy conservation features were performed using NASA's NECAP Energy Program

    Circumstellar Disks Around Binary Stars in Taurus

    Get PDF
    We have conducted a survey of 17 wide (> 100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and ten secondaries, with disk masses as low as 104M10^{-4} M_{\odot}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of FmmM1.52.0F_{mm} \propto M_{\ast}^{1.5-2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.Comment: To appear in the Astrophysical Journal, 12 page

    NECAP 4.1: NASA's Energy-Cost Analysis Program fast input manual and example

    Get PDF
    NASA's Energy-Cost Analysis Program (NECAP) is a powerful computerized method to determine and to minimize building energy consumption. The program calculates hourly heat gain or losses taking into account the building thermal resistance and mass, using hourly weather and a response factor method. Internal temperatures are allowed to vary in accordance with thermostat settings and equipment capacity. NECAP 4.1 has a simplified input procedure and numerous other technical improvements. A very short input method is provided. It is limited to a single zone building. The user must still describe the building's outside geometry and select the type of system to be used

    Thermal performance of a photographic laboratory process: Solar Hot Water System

    Get PDF
    The thermal performance of a solar process hot water system is described. The system was designed to supply 22,000 liters (5,500 gallons) per day of 66 C (150 F) process water for photographic processing. The 328 sq m (3,528 sq. ft.) solar field has supplied 58% of the thermal energy for the system. Techniques used for analyzing various thermal values are given. Load and performance factors and the resulting solar contribution are discussed

    Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    Get PDF
    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. A 1,180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row were calculated and recorded along with sensor, insolation, and weather data every five minutes using a minicomputer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points
    corecore