37 research outputs found
Passport Experience: Impact Analytics Fall 2014 to Fall 2018
Utah State University (USU) dedicates substantial resources to support student transition to higher education. The Passport Experience cuts across all university domains to support early student participation in curricular, co-curricular, and extra-curricular activities. Students are invited to attend a variety of events, when milestones are reached, students are rewarded. Persistence is a primary objective of the Passport Experience. The Passport Experience helps students develop an increased awareness of campus events, broad their engagement in the university experience, and become more involved in the University community. This report explores the association between the Passport Experience and studentsâ persistence toward graduation. METHODS: Passport participation was captured through card swipes. Students who had enough records of Passport participation to receive a reward were compared to similar students who had no record of participation. Students were matched for comparison using prediction- based propensity score matching. Students were matched with non-users based on their persistence predication and their propensity to participate. FINDINGS: Students were 97% similar following matching. Participating and comparison students were compared using difference-in-difference testing. Students who participated were significantly more likely to persist at USU than similar students who did not (DID = 0.054, p \u3c .001). The unstandardized effect size can be estimated through student impact. It is estimated that the Passport Experience assisted in retaining 6 (CI: 1 â 9) students each year who were otherwise not expected to persist. When data collection procedures were improved in 2017, the impact of the Passport Experience increased to an estimated retention of 37 (CI: 1 to 72) students. Further tracking of this program is warrented given improved data collection and new practices
The Blurred Line Between Form and Process: A Comparison of Stream Channel Classification Frameworks
Stream classification provides a means to understand the diversity and distribution of channels and floodplains that occur across a landscape while identifying links between geomorphic form and process. Accordingly, stream classification is frequently employed as a watershed planning, management, and restoration tool. At the same time, there has been intense debate and criticism of particular frameworks, on the grounds that these frameworks classify stream reaches based largely on their physical form, rather than direct measurements of their component hydrogeomorphic processes. Despite this debate surrounding stream classifications, and their ongoing use in watershed management, direct comparisons of channel classification frameworks are rare. Here we implement four stream classification frameworks and explore the degree to which each make inferences about hydrogeomorphic process from channel form within the Middle Fork John Day Basin, a watershed of high conservation interest within the Columbia River Basin, U.S.A. We compare the results of the River Styles Framework, Natural Channel Classification, Rosgen Classification System, and a channel form-based statistical classification at 33 field-monitored sites. We found that the four frameworks consistently classified reach types into similar groups based on each reach or segmentâs dominant hydrogeomorphic elements. Where classified channel types diverged, differences could be attributed to the (a) spatial scale of input data used, (b) the requisite metrics and their order in completing a frameworkâs decision tree and/or, (c) whether the framework attempts to classify current or historic channel form. Divergence in framework agreement was also observed at reaches where channel planform was decoupled from valley setting. Overall, the relative agreement between frameworks indicates that criticism of individual classifications for their use of form in grouping stream channels may be overstated. These form-based criticisms may also ignore the geomorphic tenet that channel form reflects formative hydrogeomorphic processes across a given landscape
KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V=8 Subgiant HD 93396
We report the discovery of a transiting exoplanet, KELT-11b, orbiting the
bright () subgiant HD 93396. A global analysis of the system shows that
the host star is an evolved subgiant star with K,
, , log , and [Fe/H].
The planet is a low-mass gas giant in a day orbit,
with , , g cm, surface gravity log , and equilibrium temperature K. KELT-11 is the brightest known transiting exoplanet host
in the southern hemisphere by more than a magnitude, and is the 6th brightest
transit host to date. The planet is one of the most inflated planets known,
with an exceptionally large atmospheric scale height (2763 km), and an
associated size of the expected atmospheric transmission signal of 5.6%. These
attributes make the KELT-11 system a valuable target for follow-up and
atmospheric characterization, and it promises to become one of the benchmark
systems for the study of inflated exoplanets.Comment: 15 pages, Submitted to AAS Journal
KELT-24b: A 5M_J Planet on a 5.6 day Well-Aligned Orbit around the Young V=8.3 F-star HD 93148
We present the discovery of KELT-24 b, a massive hot Jupiter orbiting a bright (V=8.3 mag, K=7.2 mag) young F-star with a period of 5.6 days. The host star, KELT-24 (HD 93148), has a T_(eff) =6508±49 K, a mass of Mâ = 1.461^(+0.056)_(â0.060) M_â, radius of Râ = 1.506±0.022 R_â, and an age of 0.77^(+0.61)_(â0.42) Gyr. Its planetary companion (KELT-24 b) has a radius of R_P = 1.272^(+0.021)_(â0.022) R_J, a mass of MP = 5.18^(+0.21)_(â0.22) M_J, and from Doppler tomographic observations, we find that the planet's orbit is well-aligned to its host star's projected spin axis (λ = 2.6^(+5.1)_(â3.6)). The young age estimated for KELT-24 suggests that it only recently started to evolve from the zero-age main sequence. KELT-24 is the brightest star known to host a transiting giant planet with a period between 5 and 10 days. Although the circularization timescale is much longer than the age of the system, we do not detect a large eccentricity or significant misalignment that is expected from dynamical migration. The brightness of its host star and its moderate surface gravity make KELT-24b an intriguing target for detailed atmospheric characterization through spectroscopic emission measurements since it would bridge the current literature results that have primarily focused on lower mass hot Jupiters and a few brown dwarfs
Another Shipment of Six Short-Period Giant Planets from TESS
We present the discovery and characterization of six short-period, transiting
giant planets from NASA's Transiting Exoplanet Survey Satellite (TESS) --
TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642),
TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), & TOI-2497 (TIC 97568467).
All six planets orbit bright host stars (8.9 <G< 11.8, 7.7 <K< 10.1). Using a
combination of time-series photometric and spectroscopic follow-up observations
from the TESS Follow-up Observing Program (TFOP) Working Group, we have
determined that the planets are Jovian-sized (R = 1.00-1.45 R),
have masses ranging from 0.92 to 5.35 M, and orbit F, G, and K stars
(4753 T 7360 K). We detect a significant orbital eccentricity
for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 days,
= ), TOI-2145 b (P = 10.261 days, =
), and TOI-2497 b (P = 10.656 days, =
). TOI-2145 b and TOI-2497 b both orbit subgiant host
stars (3.8 g 4.0), but these planets show no sign of inflation
despite very high levels of irradiation. The lack of inflation may be explained
by the high mass of the planets; M (TOI-2145
b) and M (TOI-2497 b). These six new discoveries
contribute to the larger community effort to use {\it TESS} to create a
magnitude-complete, self-consistent sample of giant planets with
well-determined parameters for future detailed studies.Comment: 20 Pages, 6 Figures, 8 Tables, Accepted by MNRA
Unsuccessful retrieval attempts enhance subsequent learning.
Taking tests enhances learning. But what happens when one cannot answer a test questionâdoes an unsuccessful retrieval attempt impede future learning or enhance it? The authors examined this question using materials that ensured that retrieval attempts would be unsuccessful. In Experiments 1 and 2, participants were asked fictional general-knowledge questions (e.g., âWhat peace treaty ended the Calumet War?â). In Experiments 3â6, participants were shown a cue word (e.g., whale) and were asked to guess a weak associate (e.g., mammal); the rare trials on which participants guessed the correct response were excluded from the analyses. In the test condition, participants attempted to answer the question before being shown the answer; in the read-only condition, the question and answer were presented together. Unsuccessful retrieval attempts enhanced learning with both types of materials. These results demonstrate that retrieval attempts enhance future learning; they also suggest that taking challenging testsâinstead of avoiding errorsâmay be one key to effective learning
Riparian Vegetation as an Indicator of Riparian Condition: Detecting Separtures from Historic Condition Across the North American West
Methods that identify local riparian vegetation condition, an effective proxy for riparian health, have not been applied across broad, regional extents. Here we present an index to assess reach-scale (500 m segment) riparian vegetation condition across entire drainage networks. We estimated riparian vegetation condition for 53,250 km of perennial streams and rivers, 25,685 km in Utah, and 27,565 km in twelve watersheds of the interior Columbia River Basin (CRB), USA. The index characterizes riparian vegetation condition as the ratio of existing native riparian vegetation cover to pre-European settlement riparian vegetation cover at a given reach. Roughly 62% of Utah and 48% of CRB watersheds showed significant (\u3e33%) to large (\u3e 66%) departure from historic condition. rough comparisons to ground-based classification results, we estimate the existing vegetation component of the index to be 85% accurate. Our assessments yielded riparian condition maps that will help resource managers better prioritize sites and treatments for reach-scale conservation and restoration activities