257 research outputs found

    Ulcerative colitis, Crohn's disease, and irritable bowel syndrome have different profiles of extracellular matrix turnover, which also reflects disease activity in Crohn's disease

    Get PDF
    Increased protease activity is a key pathological feature of inflammatory bowel disease (IBD). However, the differences in extracellular matrix remodelling (ECM) in Crohn's disease (CD) and ulcerative colitis (UC) are not well described. An increased understanding of the inflammatory processes may provide optimized disease monitoring and diagnostics. We investigated the tissue remodelling in IBD and IBS patients by using novel blood-based biomarkers reflecting ECM remodelling.Five ECM biomarkers (VICM, BGM, EL-NE, C5M, Pro-C5) were measured by competitive ELISAs in serum from 72 CD patients, 60 UC patients, 22 patients with irritable bowel syndrome (IBS), and 24 healthy donors. One-way analysis of variance, Mann-Whitney U-test, logistic regression models, and receiver operator characteristics (ROC) curve analysis was carried out to evaluate the diagnostic accuracy of the biomarkers.The ECM remodelling was significantly different in UC compared to CD. The best biomarker combination to differentiate UC from CD and colonic CD was BGM and VICM (AUC = 0.98, P<0.001; AUC = 0.97, P<0.001), and the best biomarker combination to differentiate IBD from IBS patients were BGM, EL-NE, and Pro-C5 (AUC = 0.8, P<0.001). When correcting for the use of immunosuppressant and elevated CRP levels (CRP>5mg/mL), correlation of Pro-C5 (r = 0.36) with CDAI was slightly improved compared to CRP (r = 0.27) corrected for the use of immunosuppressant. Furthermore, BGM and EL-NE biomarkers were highly associated with colon inflammation in CD patients.ECM fragments of tissue remodelling in IBD affect UC and CD differently, and may aid in differentiating IBD from IBS (EL-NE, BGM, Pro-C5), and UC from CD patients (BGM, VICM). Formation of type V collagen is related to the level of inflammation in CD and may reflect disease activity in CD

    Investigation of saturation effects in ceramic phosphors for laser lighting

    Get PDF
    We report observations of saturation effects in a Ce:LuAG and Eu-doped nitride ceramic phosphor for conversion of blue laser light for white light generation. The luminous flux from the phosphors material increases linearly with the input power until saturation effects limit the conversion. It is shown that the temperature of the phosphor layer influences the saturation power level and the conversion efficiency. It is also shown that the correlated color temperature (CCT), phosphor conversion efficiency and color rendering index (CRI) are dependent both on the incident power and spot size diameter of the illumination. A phosphor conversion efficiency up to 140.8 lm/W with CRI of 89.4 was achieved. The saturation in a ceramic phosphor, when illuminated by high intensity laser diodes, is estimated to play the main role in limiting the available luminance from laser-based lighting systems

    Optimization of Grignard Addition to Esters: Kinetic and Mechanistic Study of Model Phthalide using Flow Chemistry

    Get PDF
    © 2018 American Chemical Society. The kinetics of sequential addition of a distinct Grignard species onto a lactone is studied by flow chemistry. The experimental data are shown to be consistent with a kinetic model based on four reaction steps, reaction of ester to magnesium hemiacetal, rearrangement to ketone (forward and backward), and reaction of ketone to tertiary alcohol upon quenching. The experimental derived reaction mechanism is supported by ab initio molecular computations, and the predicted activation energy is in good agreement with the experimental observations. The Grignard reaction follows a substrate-independent, reductive [2 + 2] cycloaddition of the Meisenheimer/Casper type. Moreover, the rearrangement equilibrium between magnesium hemiacetal and ketone is characterized and found to be feasible. Monoaddition of the ester carbonyl group is demonstrated for fluorophenylmagnesium bromide but at reaction conditions at -40 °C with several hours of residence time. Working under cryogenic temperature conditions is essential to realizing monoaddition of the ester carbonyl group with Grignard reagents

    Microfluidic device for robust generation of two-component liquid-in-air slugs with individually controlled composition

    Get PDF
    Using liquid slugs as microreactors and microvessels enable precise control over the conditions of their contents on short-time scales for a wide variety of applications. Particularly for screening applications, there is a need for control of slug parameters such as size and composition. We describe a new microfluidic approach for creating slugs in air, each comprising a size and composition that can be selected individually for each slug. Two-component slugs are formed by first metering the desired volume of each reagent, merging the two volumes into an end-to-end slug, and propelling the slug to induce mixing. Volume control is achieved by a novel mechanism: two closed chambers on the chip are initially filled with air, and a valve in each is briefly opened to admit one of the reagents. The pressure of each reagent can be individually selected and determines the amount of air compression, and thus the amount of liquid that is admitted into each chamber. We describe the theory of operation, characterize the slug generation chip, and demonstrate the creation of slugs of different compositions. The use of microvalves in this approach enables robust operation with different liquids, and also enables one to work with extremely small samples, even down to a few slug volumes. The latter is important for applications involving precious reagents such as optimizing the reaction conditions for radiolabeling biological molecules as tracers for positron emission tomography

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care
    corecore