13 research outputs found

    When natural antibodies become pathogenic: autoantibodies targeted against G protein-coupled receptors in the pathogenesis of systemic sclerosis

    Get PDF
    Systemic sclerosis (SSc) is a chronic, multisystem connective tissue, and autoimmune disease with the highest case-specific mortality and complications among rheumatic diseases. It is characterized by complex and variable features such as autoimmunity and inflammation, vasculopathy, and fibrosis, which pose challenges in understanding the pathogenesis of the disease. Among the large variety of autoantibodies (Abs) present in the sera of patients suffering from SSc, functionally active Abs against G protein-coupled receptors (GPCRs), the most abundant integral membrane proteins, have drawn much attention over the last decades. These Abs play an essential role in regulating the immune system, and their functions are dysregulated in diverse pathological conditions. Emerging evidence indicates that functional Abs targeting GPCRs, such as angiotensin II type 1 receptor (AT1R) and the endothelin-1 type A receptor (ETAR), are altered in SSc. These Abs are part of a network with several GPCR Abs, such as those directed to the chemokine receptors or coagulative thrombin receptors. In this review, we summarize the effects of Abs against GPCRs in SSc pathologies. Extending the knowledge on pathophysiological roles of Abs against GPCRs could provide insights into a better understanding of GPCR contribution to SSc pathogenesis and therefore help in developing potential therapeutic strategies that intervene with pathological functions of these receptors

    Regulatory T cells inhibit autoantigen-specific CD4+ T cell responses in lupus-prone NZB/W F1 mice

    Get PDF
    IntroductionProgressive loss of regulatory T cell (Treg)-mediated control over autoreactive effector T cells contributes to the development of systemic lupus erythematosus (SLE). Accordingly, we hypothesized that Treg may also have the capacity to suppress the activation of autoreactive CD4+ T cells that are considered to drive autoimmunity.MethodsTo investigate whether Treg are involved in the control of autoreactive CD4+ T cells, we depleted CD25+ Treg cells either in vivo or in vitro, or combined both approaches before antigen-specific stimulation with the SLE-associated autoantigen SmD1(83-119) in the NZB/W F1 mouse model either after immunization against SmD1(83-119) or during spontaneous disease development. Frequencies of autoantigen-specific CD4+ T cells were determined by flow cytometry using the activation marker CD154.ResultsBoth in vitro and in vivo depletion of CD25+ Treg, respectively, increased the frequencies of detectable autoantigen-specific CD4+ T cells by approximately 50%. Notably, the combined in vivo and in vitro depletion of CD25+ Treg led almost to a doubling in their frequencies. Frequencies of autoantigen-specific CD4+ T cells were found to be lower in immunized haploidentical non-autoimmune strains and increased frequencies were detectable in unmanipulated NZB/W F1 mice with active disease. In vitro re-addition of CD25+ Treg after Treg depletion restored suppression of autoantigen-specific CD4+ T cell activation.DiscussionThese results suggest that the activation and expansion of autoantigen-specific CD4+ T cells are partly controlled by Treg in murine lupus. Depletion of Treg therefore can be a useful approach to increase the detectability of autoantigen-specific CD4+ T cells allowing their detailed characterization including lineage determination and epitope mapping and their sufficient ex vivo isolation for cell culture

    Natural Treg and role of IL-2 in lupus

    No full text

    Identification and characterization of antigen-specific CD4+ T cells targeting renally expressed antigens in human lupus nephritis with two independent methods

    Get PDF
    In the search for anti-renal autoreactivity in human lupus nephritis, we stimulated blood-derived CD4+ T cells from patients with systemic lupus erythematosus with various kidney lysates. Although only minor responses were detectable, these experiments led to the development of a search algorithm that combined autoantibody association with human lupus nephritis and target gene expression in inflamed kidneys. Applying this algorithm, five potential T cell antigens were identified. Blood-derived CD4+ T cells were then stimulated with these antigens. The cells were magnetically enriched prior to measurement with flow cytometry to facilitate the detection of very rare autoantigen-specific cells. The detected responses were dominated by IFN-γ-producing CD4+ T cells. Additionally, IL-10-producing CD4+ T cells were found. In a next step, T cell reactivity to each single antigen was independently evaluated with T cell libraries and [3H]-thymidine incorporation assays. Here, Vimentin and Annexin A2 were identified as the main T cell targets. Finally, Vimentin reactive T cells were also found in the urine of three patients with active disease. Overall, our experiments show that antigen-specific CD4+ T cells targeting renally expressed antigens arise in human lupus nephritis and correlate with disease activity and are mainly of the Th1 subset

    Pathogenetic and Clinical Aspects of Anti-Neutrophil Cytoplasmic Autoantibody-Associated Vasculitides

    Get PDF
    Anti-neutrophil cytoplasmic autoantibodies (ANCA) targeting proteinase 3 (PR3) and myeloperoxidase expressed by innate immune cells (neutrophils and monocytes) are salient diagnostic and pathogenic features of small vessel vasculitis, comprising granulomatosis with polyangiitis (GPA), microscopic polyangiitis, and eosinophilic GPA. Genetic studies suggest that ANCA-associated vasculitides (AAV) constitute separate diseases, which share common immunological and pathological features, but are otherwise heterogeneous. The successful therapeutic use of anti-CD20 antibodies emphasizes the prominent role of ANCA and possibly other autoantibodies in the pathogenesis of AAV. However, to elucidate causal effects in AAV, a better understanding of the complex interplay leading to the emergence of B lymphocytes that produce pathogenic ANCA remains a challenge. Different scenarios seem possible; e.g., the break of tolerance induced by a shift from non-pathogenic toward pathogenic autoantigen epitopes in inflamed tissue. This review gives a brief overview on current knowledge about genetic and epigenetic factors, barrier dysfunction and chronic non-resolving inflammation, necro-inflammatory auto-amplification of cellular death and inflammation, altered autoantigen presentation, alternative complement pathway activation, alterations within peripheral and inflamed tissue-residing T- and B-cell populations, ectopic lymphoid tissue neoformation, the characterization of PR3-specific T-cells, properties of ANCA, links between autoimmune disease and infection-triggered pathology, and animal models in AAV

    Increased protease-activated receptor 1 autoantibodies are associated with severe COVID-19

    No full text
    Immune perturbation is a hallmark of Coronavirus Disease 2019 (COVID-19) with ambiguous roles of various immune cell compartments. Plasma cells, responsible for antibody production, have a two-pronged response while mounting an immune defence with 1) physiological immune response producing neutralizing antibodies against protein structures of SARS-CoV-2 and 2) potentially deleterious autoantibody generation. Growing evidence hints towards broad activation of plasma cells and the presence of pathologic autoantibodies (abs) that mediate immune perturbation in acute COVID-19 [1]. Recently, a systematic screening for abs confirmed induction of diverse functional abs in SARS-CoV-2 infection, targeting several immunomodulatory proteins, including cytokines/chemokines and their respective G-protein coupled receptors (GPCR) [1]. Abs against GPCR act as agonistic and allosteric receptor modulators and are linked to chronic inflammatory diseases [2] and, as we recently demonstrated, disease severity in acute COVID-19 [3]
    corecore