5 research outputs found

    Multifaceted Deactivation Dynamics of Fe(II) <i>N</i>‑Heterocyclic Carbene Photosensitizers

    No full text
    Excited state dynamics of three iron(II) carbene complexes that serve as prototype Earth-abundant photosensitizers were investigated by ultrafast optical spectroscopy. Significant differences in the dynamics between the investigated complexes down to femtosecond time scales are used to characterize fundamental differences in the depopulation of triplet metal-to-ligand charge-transfer (3MLCT) excited states in the presence of energetically accessible triplet metal-centered (3MC) states. Novel insights into the full deactivation cascades of the investigated complexes include evidence of the need to revise the deactivation model for a prominent iron carbene prototype complex, a refined understanding of complex 3MC dynamics, and a quantitative discrimination between activated and barrierless deactivation steps along the 3MLCT → 3MC → 1GS path. Overall, the study provides an improved understanding of photophysical limitations and opportunities for the use of iron(II)-based photosensitizers in photochemical applications

    Fe<sup>II</sup> Hexa <i>N</i>‑Heterocyclic Carbene Complex with a 528 ps Metal-to-Ligand Charge-Transfer Excited-State Lifetime

    No full text
    The iron carbene complex [Fe<sup>II</sup>(btz)<sub>3</sub>]­(PF<sub>6</sub>)<sub>2</sub> (where btz = 3,3′-dimethyl-1,1′-bis­(<i>p</i>-tolyl)-4,4′-bis­(1,2,3-triazol-5-ylidene)) has been synthesized, isolated, and characterized as a low-spin ferrous complex. It exhibits strong metal-to-ligand charge transfer (MLCT) absorption bands throughout the visible spectrum, and excitation of these bands gives rise to a <sup>3</sup>MLCT state with a 528 ps excited-state lifetime in CH<sub>3</sub>CN solution that is more than one order of magnitude longer compared with the MLCT lifetime of any previously reported Fe<sup>II</sup> complex. The low potential of the [Fe­(btz)<sub>3</sub>]<sup>3+</sup>/[Fe­(btz)<sub>3</sub>]<sup>2+</sup> redox couple makes the <sup>3</sup>MLCT state of [Fe<sup>II</sup>(btz)<sub>3</sub>]<sup>2+</sup> a potent photoreductant that can be generated by light absorption throughout the visible spectrum. Taken together with our recent results on the [Fe<sup>III</sup>(btz)<sub>3</sub>]<sup>3+</sup> form of this complex, these results show that the Fe<sup>II</sup> and Fe<sup>III</sup> oxidation states of the same Fe­(btz)<sub>3</sub> complex feature long-lived MLCT and LMCT states, respectively, demonstrating the versatility of iron <i>N-</i>heterocyclic carbene complexes as promising light-harvesters for a broad range of oxidizing and reducing conditions

    Shedding Light on the Nature of Photoinduced States Formed in a Hydrogen-Generating Supramolecular RuPt Photocatalyst by Ultrafast Spectroscopy

    Get PDF
    Photoinduced electronic and structural changes of a hydrogen-generating supramolecular RuPt photocatalyst are studied by a combination of time-resolved photoluminescence, optical transient absorption, and X-ray absorption spectroscopy. This work uses the element specificity of X-ray techniques to focus on the interplay between the photophysical and -chemical processes and the associated time scales at the catalytic Pt moiety. We observe very fast (<30 ps) photoreduction of the Pt catalytic site, followed by an ∼600 ps step into a strongly oxidized Pt center. The latter process is likely induced by oxidative addition of reactive iodine species. The oxidized Pt species is long-lived and fully recovers to the original ground state complex on a >10 μs time scale. However, the photosensitizing Ru moiety is fully restored on a much shorter ∼300 ns time scale. This reaction scheme implies that we may withdraw two electrons from a catalyst that is activated by a single photon

    Ultrafast Time-Resolved X‑ray Absorption Spectroscopy of Ferrioxalate Photolysis with a Laser Plasma X‑ray Source and Microcalorimeter Array

    No full text
    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. These results are compared to previously published transient X-ray absorption measurements on the same reaction and found to be consistent with the results from Ogi et al. and inconsistent with the results of Chen et al. (Ogi, Y.; et al. Struct. Dyn. 2015, 2, 034901; Chen, J.; Zhang, H.; Tomov, I. V.; Ding, X.; Rentzepis, P. M. Chem. Phys. Lett. 2007, 437, 50–55). We provide quantitative limits on the Fe–O bond length change. Finally, we review potential improvements to our measurement technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors

    Toward Highlighting the Ultrafast Electron Transfer Dynamics at the Optically Dark Sites of Photocatalysts

    No full text
    Building a detailed understanding of the structure–function relationship is a crucial step in the optimization of molecular photocatalysts employed in water splitting schemes. The optically dark nature of their active sites usually prevents a complete mapping of the photoinduced dynamics. In this work, transient X-ray absorption spectroscopy highlights the electronic and geometric changes that affect such a center in a bimetallic model complex. Upon selective excitation of the ruthenium chromophore, the cobalt moiety is reduced through intramolecular electron transfer and undergoes a spin flip accompanied by an average bond elongation of 0.20 ± 0.03 Å. The analysis is supported by simulations based on density functional theory structures (B3LYP*/TZVP) and FEFF 9.0 multiple scattering calculations. More generally, these results exemplify the large potential of the technique for tracking elusive intermediates that impart unique functionalities in photochemical devices
    corecore