23 research outputs found

    A clinical feasibility study to evaluate the safety and efficacy of PEOT/PBT implants for human donor site filling during mosaicplasty

    Get PDF
    Mosaicplasty has become a well-accepted treatment modality for articular cartilage lesions in the knee. Postoperative bleeding remains potentially concerning. This study evaluates the porous poly(ethylene oxide)terephthalate/poly(butylene terephthalate) (PEOT/PBT) implants used for donor site filling. Empty donor sites were the controls. After 9 months, MRI, macroscopical and histological analysis were carried out. Treated defects did not cause postoperative bleeding. No adverse events or inflammatory response was observed. PEOT/PBT implants were well integrated. Empty controls occasionally showed protrusion of repair tissue at the defect margins. Surface stiffness was minimally improved compared to controls. Existing polymer fragments indicated considerable biodegradation. Histological evaluation of the filled donor sites revealed congruent fibrocartilaginous surface repair with proteoglycan-rich domains and subchondral cancellous bone formation with interspersed fibrous tissue in all implanted sites. The PEOT/PBT implants successfully reduce donor site morbidity and postoperative bleeding after mosaicplasty

    Co-culture in cartilage tissue engineering

    Get PDF
    For biotechnological research in vitro in general and tissue engineering specifically, it is essential to mimic the natural conditions of the cellular environment as much as possible. In choosing a model system for in vitro experiments, the investigator always has to balance between being able to observe, measure or manipulate cell behaviour and copying the in situ environment of that cell. Most tissues in the body consist of more than one cell type. The organization of the cells in the tissue is essential for the tissue's normal development, homeostasis and repair reaction. In a co-culture system, two or more cell types brought together in the same culture environment very likely interact and communicate. Co-culture has proved to be a powerful in vitro tool in unravelling the importance of cellular interactions during normal physiology, homeostasis, repair and regeneration. The first co-culture studies focused mainly on the influence of cellular interactions on oocytes maturation to a pre-implantation blastocyst. Therefore, a brief overview of these studies is given here. Later on in the history of co-culture studies, it was applied to study cell-cell communication, after which, almost immediately as the field of tissue engineering was recognized, it was introduced in tissue engineering to study cellular interactions and their influence on tissue formation. This review discusses the introduction and applications of co-culture systems in cell biology research, with the emphasis on tissue engineering and its possible application for studying cartilage regeneration

    Tissue Engineering of Bovine Articular Cartilage within Porous Poly(ether ester) Copolymer Scaffolds with Different Structures

    Get PDF
    The potential of porous poly(ether ester) scaffolds made from poly(ethylene glycol) terephthalate: poly(butylene terephthalate) (PEGT:PBT) block copolymers produced by various methods to enable cartilaginous tissue formation in vitro was studied. Scaffolds were fabricated by two different processes: paraffin templating (PT) and compression molding (CM). To determine whether PEGT:PBT scaffolds are able to support chondrogenesis, primary bovine chondrocytes were seeded within cylindrical scaffolds under dynamic seeding conditions. On day 3, constructs were transferred to six-well plates and evaluated for glycosaminoglycan (GAG) distribution (3, 10, and 24 days), type II collagen distribution, cellularity, and total collagen and GAG content (10 and 24 days). It was observed that better cell distribution during infiltration within PT scaffolds allowed greater chondrogenesis, and at later time points, than in CM scaffolds. The amount of GAG remained constant for all groups from 10 to 24 days, whereas collagen content increased significantly. These data suggest that PEGT:PBT scaffolds are suitable for cartilage tissue engineering, with the PT process enabling greater chondrogenesis than CM

    The regulation of expanded human nasal chondrocyte re-differentiation capacity by substrate composition and gas plasma surface modification

    Get PDF
    Optimizing re-differentiation of clinically relevant cell sources on biomaterial substrates in serum containing (S+) and serum-free (SF) media is a key consideration in scaffold-based articular cartilage repair strategies. We investigated whether the adhesion and post-expansion re-differentiation of human chondrocytes could be regulated by controlled changes in substrate surface chemistry and composition in S+ and SF media following gas plasma (GP) treatment. Expanded human nasal chondrocytes were plated on gas plasma treated (GP+) or untreated (GP−) poly(ethylene glycol)-terephthalate–poly(butylene terephthalate) (PEGT/PBT) block co-polymer films with two compositions (low or high PEG content). Total cellularity, cell morphology and immunofluorescent staining of vitronectin (VN) and fibronectin (FN) integrin receptors were evaluated, while post-expansion chondrogenic phenotype was assessed by collagen types I and II mRNA expression.\ud \ud We observed a direct relationship between cellularity, cell morphology and re-differentiation potential. Substrates supporting high cell adhesion and a spread morphology (i.e. GP+ and low PEG content films), resulted in a significantly greater number of cells expressing α5β1 FN to αVβ3 VN integrin receptors, concomitant with reduced collagen type II/I mRNA gene expression. Substrates supporting low cell adhesion and a spherical morphology (GP− and high PEG content films) promoted chondrocyte re-differentiation indicated by high collagen type II/I gene expression and a low percentage of α5β1 FN integrin expressing cells.\ud \ud This study demonstrates that cell–substrate interactions via α5β1 FN integrin mediated receptors negatively impacts expanded human nasal chondrocyte re-differentiation capacity. GP treatment promotes cell adhesion in S+ media but reverses the ability of low PEG content PEGT/PBT substrates to maintain chondrocyte phenotype. We suggest alternative cell immobilization techniques to GP are necessary for clinical application in articular cartilage repair

    Evaluation of chondrogenesis within PEGT: PBT scaffolds with high PEG content

    Get PDF
    Porous poly(ethylene glycol) terephthalate:poly (butylene terephthalate) (PEGT:PBT) scaffolds with high PEG molecular weight (1000 g/mole) and PEGT content (60%) were fabricated using two different processes - paraffin templating and compression molding - for cartilage engineering applications. This polymer composition has previously been shown to enable chondrocyte adhesion and maintain differentiated phenotype in 2D monolayer culture. The influence of 3D polymer scaffold processing on the formation of cartilaginous tissue was studied by seeding primary immature bovine chondrocytes within cylindrical scaffolds in mixed flask reactors for 3 days, followed by cultivation in culture plates for a total of 10 or 24 days. Tissue-polymer constructs were evaluated morphologically by SEM and histology, and quantitatively for cellularity, total collagen, and glycosaminoglycan content, all of which remained statistically equivalent for each time point tested, irrespective of fabrication method. These data demonstrate that the polymers engineered for this study were able to support chondrogenesis independent of scaffold fabrication process, with the influence of pore architecture lessened by the highly hydrated scaffold microenvironments induced by high PEG content

    Adhesion-mediated signal transduction in human articular chondrocytes: the influence of biomaterial chemistry and tenascin-C

    Get PDF
    Chondrocyte ‘dedifferentiation’ involves the switching of the cell phenotype to one that no longer secretes extracellular matrix found in normal cartilage and occurs frequently during chondrocyte expansion in culture. It is also characterized by the differential expression of receptors and intracellular proteins that are involved in signal transduction pathways, including those associated with cell shape and actin microfilament organization. The objective of this study was to examine the modulation of chondrocyte phenotype by cultivation on polymer substrates containing poly(ethylene glycol) (PEG). We observed differential arrangement of actin organization in articular chondrocytes, depending on PEG length. When cultivated on 300 g/mol PEG substrates at day 19, chondrocytes had lost intracellular markers characteristic of the differentiated phenotype, including type II collagen and protein kinase C (PKC). On these surfaces, chondrocytes also expressed focal adhesion and signaling proteins indicative of cell attachment, spreading, and FA turnover, including RhoA, focal adhesion kinase, and vinculin. The switch to a dedifferentiated chondrocyte phenotype correlated with integrin expression. Conversely, the expression of CD44 receptors coincided with chondrogenic characteristics, suggesting that binding via these receptors could play a role in maintaining the differentiated phenotype on such substrates. These effects can be similar to those of compounds that interfere in intracellular signaling pathways and can be utilized to engineer cellular response

    Modulation of chondrocyte phenotype for tissue engineering by designing the biologic-polymer carrier interface

    Get PDF
    Therapeutic strategies based on cell and tissue engineering can be advanced by developing material substrates that effectively interrogate the biological compartment, with or without the complimentary local release of growth factors. Poly(ether ester) segmented copolymers were engineered as model material systems to elucidate the interfacial molecular events that govern the function of adhered cells. Surface chemistry was modulated by varying poly(ethylene glycol) (PEG) length and mole fraction with poly(butylene terephthalate) (PBT), leading to differential competitive protein adsorption of fibronectin and vitronectin from serum and consequently to different cell attachment modes. Adhesion within the hydrogel-like milieu of longer surface PEG was mediated via binding to the CD44 transmembrane receptor, rather than the RGD-integrin mechanism, whereas greater substrate-bound fibronectin resulted in cell adhesion via integrins. These adhesion modalities differentially impacted morphological cell phenotype (spread or spheroid) and the subsequent expression of mRNA transcripts (collagen types II, I) characteristic of phenotypically differentiated or dedifferentiated chondrocytes, respectively. These results demonstrate that materials can be designed to directly elicit the membrane bound receptor apparatus desired for downstream cellular response, without requiring exogenous biological growth factors to enable differentiated potential

    Modulation of Chondrocyte Phenotype for Tissue Engineering by Designing the Biological-Polymer Carrier Interface

    Get PDF
    Therapeutic strategies based on cell and tissue engineering can be advanced by developing material substrates that effectively interrogate the biological compartment, with or without the complimentary local release of growth factors. Poly(ether ester) segmented copolymers were engineered as model material systems to elucidate the interfacial molecular events that govern the function of adhered cells. Surface chemistry was modulated by varying poly(ethylene glycol) (PEG) length and mole fraction with poly(butylene terephthalate) (PBT), leading to differential competitive protein adsorption of fibronectin and vitronectin from serum and consequently to different cell attachment modes. Adhesion within the hydrogel-like milieu of longer surface PEG was mediated via binding to the CD44 transmembrane receptor, rather than the RGD-integrin mechanism, whereas greater substrate-bound fibronectin resulted in cell adhesion via integrins. These adhesion modalities differentially impacted morphological cell phenotype (spread or spheroid) and the subsequent expression of mRNA transcripts (collagen types II, I) characteristic of phenotypically differentiated or dedifferentiated chondrocytes, respectively. These results demonstrate that materials can be designed to directly elicit the membrane bound receptor apparatus desired for downstream cellular response, without requiring exogenous biological growth factors to enable differentiated potential
    corecore