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ABSTRACT 

 

Therapeutic strategies based on cell and tissue engineering can be advanced by developing 

material substrates that effectively interrogate the biological compartment, with or without, 

the complimentary local release of growth factors. Poly(ether ester) segmented copolymers 

were engineered as model material systems to elucidate the interfacial molecular events that 

govern the function of adhered cells. Surface chemistry was modulated by varying 

poly(ethylene glycol) (PEG) length and mole fraction with poly(butylene terephthalate) (PBT), 

leading to differential competitive protein adsorption of fibronectin and vitronectin from 

serum, and consequently to different cell attachment modes. Adhesion within the hydrogel-

like milieu of longer surface PEG was mediated via binding to the CD44 transmembrane 

receptor, rather than the RGD–integrin mechanism, whereas greater substrate-bound 

fibronectin resulted in cell adhesion via integrins. These adhesion modalities differentially 

impacted morphological cell phenotype (spread or spheroid) and the subsequent expression 

of mRNA transcripts (collagen types II, I) characteristic of phenotypically differentiated or 

dedifferentiated chondrocytes, respectively. These results demonstrate that materials can be 

designed to directly elicit the membrane bound receptor apparatus desired for downstream 

cellular response, without requiring exogenous biological growth factors to enable 

differentiated potential. 

 

 

Keywords: copolymer, PEG, cell transplantation, tissue engineering, chondrocyte, gene 

expression, protein adsorption, dedifferentiation, adhesion, growth factors. 
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INTRODUCTION 

 

Clinical bioengineering therapies, such as cell and tissue engineering, can involve the use of 

material substrates as delivery systems by which to transplant cells to diseased, damaged or 

resected tissue. Once placed into the patient, hybrid material-biologic constructs allow the 

transplanted cells, or induce cells at the peri-implant site, to produce tissue extracellular 

matrix (ECM) or endogenous growth factors required for tissue regeneration or repair1. 

Strategies employed to achieve the desired cellular response include the use of exogenous 

growth factors to enable differentiated potential2, as well as incorporation of peptide ligands 

or growth factors within the delivery substrate to induce bioactive functionality3. However, 

little is understood regarding the mechanistic interfacial events that have the potential to 

regulate cell function without the use of exogenous bioactive growth factors or coatings. 

 

For the development of such composite material-cellular technologies, it is necessary to 

understand the interaction between the material surface and the cellular/biological 

compartment, from protein adsorption to cell adhesion and downstream intracellular events. 

Cell-material interaction was first studied to understand the cultivation of anchorage 

dependent mammalian cells on culture substrates4-6, and more recently for cell delivery 

applications7-9. Several substrate properties have been proposed as potential regulators of 

cell function, including surface wettability, flexibility and roughness10. In serum containing 

culture conditions, however, cells would be expected to ‘sense’ the biochemical environment 

including proteins adsorbed at the surface, and not simply the native material chemistry. It 

has been suggested that a combination of substrate parameters collectively influence cell 

function by modulating the adsorption of proteins, with the resulting proteinaceous milieu at 

the surface impacting cell function11, 12. 
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A major challenge in current chondrocyte cell therapy arises from interactions between the 

cells and their delivery substrates. Chondrocyte attachment and spreading on surfaces is 

known to lead to ‘dedifferentiation’ to a more fibroblast-like cell type, i.e. loss of hyaline 

cartilage ECM protein synthesis (Type II collagen and aggrecan), and the upregulation of 

Type I collagen synthesis13-17. In addition, it has been shown that the presence of fibronectin 

(Fn) can induce chondrocyte dedifferentiation in monolayer culture18, 19. Vitronectin (Vn) has 

also shown to be involved in chondrocyte adhesion to some synthetic polymer substrates20. 

 

Segmented poly(ether ester) copolymers of poly(ethylene glycol)-terephthalate (PEGT) and 

poly(butylene terephthalate) (PBT) (PEGT:PBT) were synthesized as model substrates for 

studying material-directed cell function and cell transplantation, due to the flexibility in design 

afforded by the constituent polymers. This polymer system is also currently under evaluation 

as a substrate for tissue engineering applications. Copolymer properties are determined by 

the two components – the PEG segments contain mobile hydrophilic chains to provide a 

hydrogel-like local environment, whereas PBT provide hydrophobic, protein-binding domains 

and rigidity to the hybrid system21 (Figure 1). During synthesis, the molecular mass of PEG 

and weight ratio of the PEGT:PBT components can be tailored to endow polymer substrates 

with specific surface and mechanical properties, as dictated by individual cell delivery 

applications.  

 

The objective of this study was to elucidate the effects of varying model poly(ether ester) 

copolymer substrate parameters on the differential regulation of cell phenotype, and to 

identify interactions between materials, proteins and cells at the interfacial level that 

contribute to material-based cell regulation without the use of biological growth factors or 

coatings. 
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METHODS 

 

Polymer preparation 

 

Synthesis:  PEGT:PBT segmented copolymers were prepared by two-step condensation in 

the presence of titanium tetrabutoxide (Merck; Darmstadt, Germany) as catalyst (0.1 wt%)21. 

Vitamin E (Sigma; Uithoorn, The Netherlands) was included as an anti-oxidant for the 

polymers. Compositions were varied by changing PEG molecular mass, and PEG to dimethyl 

terephthalate/1, 4 butanediol (Merck) ratio. 

 

Polymer nomenclature: The different formulations of this copolymer system are indicated as: 

a-PEG b:c, where a is the molecular mass of PEG (g/mole), b is the mass percentage of 

PEGT and c is the mass percentage of the PBT component. For example, the copolymer 

300-PEG 55:45 has PEG molecular mass of 300 g/mole and a PEGT:PBT ratio of 55:45. 

Tissue culture polystyrene (TCPS) was included as a control surface. A list of polymer 

compositions engineered for this study per the nomenclature used is provided in Table1. 

 

Substrate preparation: 20% (w/v) polymer solutions in either chloroform (Sigma) or in a 

mixture of chloroform and 1,1,1,3,3,3-hexafluoro-2-propanol (Sigma) were cast into two-

dimensional (2D) polymer substrate films (60-100µm thick) on glass. The polymer substrates 

were placed in ethanol (12 hours) to remove residual solvent, vacuum dried under N2 (48 

hours), γ-sterilized and immersed in serum-containing culture medium (12 hours) prior to cell 

seeding. The wettabilities of individual polymer compositions have been tested and reported 

previously22, 23. 
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Tissue harvesting and cell isolation 

Non-osteoarthritic articular cartilage was harvested from the femoral heads of female 

patients undergoing hip replacement surgery, under institutional standards of informed 

consent at the University Hospital of Basel. A representative set of complete data from one 

65-year old female patient was selected. Primary chondrocytes were isolated by type II 

collagenase (Worthington Biochemical, Lakewood, NJ) digestion for 20 hours, rinsed in 

phosphate buffered saline (PBS) containing CaCl2 and MgCl2 at pH 7.4 (Invitrogen; Breda, 

The Netherlands) with 15% fetal bovine serum (FBS) (Invitrogen) and transferred to a well 

defined culture medium (Dulbecco’s Modified Eagle Medium (DMEM) containing 4.5 g/l 

glucose and supplemented with 10% FBS, 1 mM sodium pyruvate (Invitrogen), 50µg/ml 

penicillin, 50 µg/ml streptomycin, 0.4 mM L-proline, 0.1 mM non-essential amino acids and 

10 mM Hepes buffer (Sigma)). 

 

Once isolated, cells were seeded at a density of 10,000 cells/cm2 on each polymer. Attached 

cells were quantitated as described below at 1, 13 and 19 days after seeding, assessed 

morphologically and for phenotypic mRNA transcript expression at day 19. All samples were 

evaluated in duplicate. The limited sample sizes were due to difficulty in obtaining sufficient 

grossly non-osteoarthritic human cartilage from one biopsy, which was necessary for a 

consistent baseline cellular phenotype. 

 

Real time quantitative polymerase chain reaction (RT-PCR) 

Samples were frozen in Trizol reagent (Sigma) at –80°C after harvesting at day 19. RNA 

were extracted using Trizol. cDNA were generated by using Stratascript reverse 

transcriptase (Stratagene, Amsterdam, The Netherlands) in the presence of dNTP according 

to the manufacturer’s instructions. PCR reactions were performed and monitored using a ABI 
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Prism 7700 sequence Detection System (Perkin-Elmer Applied Biosystems). The PCR 

master mix was based on AmpliTaq Gold DNA polymerase (Perkin-Elmer Appplied 

Biosystems). cDNA samples were analyzed in duplicates. Sequences of primers and probes 

for human collagen type I and II have been described previously24. After an initial 

denaturation step at 95°C for 10 minutes, the cDNA products were amplified with 50 PCR 

cycles, consisting of a denaturation step at 95°C for 15 seconds and an extension step at 

60°C for 1 minute. Data analysis was carried out using the Sequence Detector V program 

(Perkin-Elmer Applied Biosystems). Since Type II collagen is a typical marker of 

differentiated chondrocytes in hyaline cartilage as opposed to Type I collagen (expressed by 

dedifferentiated chondrocytes in fibrocartilage), the ratio of mRNA levels of collagen Type II 

to I (CII/CI) was used as a useful “differentiation index” by which to compare chondrocyte 

differentiation24. 

 

Immunofluorescence analysis of receptors 

At day 19 of culture, cells were fixed for 15 minutes with 4% paraformaldehyde (Sigma), 

rinsed with PBS (Invitrogen) and blocked for 30 minutes with serum-free protein block 

(DAKO, Glostrup, Denmark). Cells were further rinsed with PBS and incubated separately 

with each of the following monoclonal antibodies: anti-α5β1 P1D6 (Covance, Princeton NJ), 

dilution 1:500; anti-αvβ3 VI-PL2 (Pharmingen, San Diego CA), dilution 1:100; anti-

CD44/FITC BU52 (Ancell, Bayport MN), dilution 1:100. Cells were washed in PBS and 

further incubated for 30 minutes with appropriate secondary antibodies (Molecular Probes) 

except for the pre-conjugated anti-CD44. Cells were then washed 3 times with PBS prior to 

mounting with an anti-fading medium (Vectashield: Vector Labs, Burlingame CA) and cover-

slipping. 
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Although it is not yet possible to discriminate between occupied and unoccupied integrins 

visualized by immunofluorescence microscopy, integrin occupancy does not preclude anti-

α5β1 mAb binding to distinct epitopes on the integrin subunits. The secondary mAb used in 

these studies is known to inhibit the binding of α5β1 to a secondary synergy Pro-His-Ser-

Arg-Asn (PHSRN) binding sequence in Fn, but does not block the recognition of the RGD 

motif25, 26, thereby leaving open the possibility that a population of such integrins may have 

bound to Fn in a manner that did not include the synergy sequence. Similarly, the BU52 anti-

CD44 mAb binds to CD44 while allowing concomitant binding to the GAG-rich epitope27, 28. 

However, there is little information available regarding anti-αvβ3 mAb peptide mapping. 

 

Scanning electron microscopy (SEM) 

To examine cell morphology, samples harvested at day 19 were fixed in Karnovsky’s fixative 

and dehydrated by a graded ethanol series and hydroxymethyldisilazane (Sigma). Samples 

were sputter coated (10nm) with gold (Cressington Scientific, Watford, UK) and examined by 

SEM (Phillips ESEM, Eindhoven, The Netherlands). 

 

Protein adsorption and desorption 

Protein adsorption was studied by immersing 500µm diameter PEGT:PBT particles of 8 

different compositions overnight in FBS at 37°C. The particles were then washed three times 

with PBS to remove passively attached proteins, and boiled in Laemmli buffer (Bio-Rad, 

Veenendaal, The Netherlands) with 5% β-mercaptoethanol (Sigma) (15 minutes) to desorb 

proteins that had chemisorbed at the surface. Particles were centrifuged and the supernatant 

(20µl) from each polymer composition normalized to total protein desorbed (RC-DC protein 

assay: Bio-Rad) were loaded into lanes of SDS-polyacrylamide gels. To test whether all 
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proteins had desorbed, the polymer particles were re-boiled in Laemmli buffer and re-

evaluated for protein content, which was non-detectable. 

 

Western blotting 

Samples were electrophoresed at 120 V. Decasted gels were soaked in blot buffer for 15 

minutes and transferred to an Immobilon-P membrane (Millipore, Amsterdam, The 

Netherlands) by blotting for 1 hour at 60 Volts, 120 mA. Blots were blocked by 30 minutes 

incubation in PBS / 0.5% Tween X-100 (Sigma) / 2% gelatin (CalBiochem, San Diego CA). 

This was followed by 4 hours incubation at RT with either of the primary antibodies. The 

primary antibodies used were IST-3 anti-human Fn mAb (Sigma) and anti-bovine Vn pAb 

(Biotrend, Cologne, Germany). Blots were rinsed 3 x 10 minutes in PBS / 0.5% Tween X-100 

followed by incubation for 1 hour at RT in PBS / 0.5% Tween X-100 / 2% gelatin plus the 

appropriate AP-conjugated secondary antibodies (Sigma), followed by rinsing 3 x 10 minutes 

in PBS / 0.5% Tween X-100. Detection was performed using a colorimetric AP conjugate 

substrate kit (Bio-Rad). 

 

Semi-quantitative image analysis 

Stained blots were digitally scanned and relative quantities of Vn and Fn determined by 

automated histogram-based counting of dark versus white pixels, based on specified 

threshold values. The results are depicted on a scale of arbitrary densitometric units where 

the amount of dark pixels were normalized to the fixed overall band area. 

 

Cell quantitation 

Quantitation of total DNA was performed by Cyquant Cell Proliferation assay kit (Molecular 

Probes, Leiden, The Netherlands) using a spectrofluorometer (Perkin Elmer, IL). Cell 
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numbers were derived from DNA content by using results which show that there is 10pg DNA 

per human chondrocyte29.  

 

Statistical Analysis 

Analysis of significance (2-tailed distribution) was performed to study the correlation between 

polymer contact angle, cell attachment, CII/CI ratio, Fn and Vn adsorption (SPSS, Chicago 

IL). 
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RESULTS 

 

The phenotype-modulating effects of the polymer materials are reported first, followed by an 

examination of the underlying mechanisms involved in the cellular and molecular response. 

 
Analysis of mRNA transcript expression by real time-PCR 

Quantitative analyses of type II and type I collagen messenger RNA (mRNA) expression in 

cells cultivated for 19 days revealed the highest collagen II : collagen I (CII/CI) mRNA ratio 

for chondrocytes cultured on 1000-PEG 70:30 films (CII/CI=7.3) (Fig. 2a). The lowest CII/CI 

mRNA ratios were found on the TCPS controls (CII/CI=0.065). Cells on the 300-PEG 70:30 

substrates demonstrated a marginally higher CII/CI mRNA ratio than those on 1000-PEG 

40:60, whereas chondrocytes on the remaining 300 g/mole surfaces had lower CII/CI mRNA 

ratios than on any other PEGT:PBT substrate. Within the 1000 g/mole PEG group, only 

1000-PEG 40:60 (CII/CI=0.6) had a CII/CI mRNA ratio of less than 1 (Fig. 2a).  

 

Plots of CII/CI mRNA ratios versus either Fn or Vn revealed a significant inverse correlation 

with Fn adsorption (significant to the 0.05 level (2-tailed)), but no correlation with Vn (Fig. 

2b). However, chondrocyte CII/CI mRNA expression ratios plotted against surface contact 

angles indicated no direct correlation (data not presented). 

 

Receptor expression 

Immunofluorescence microscopy at day 19 revealed the expression of the Vn-receptor αvβ3 

integrin and of the Fn-receptor α5β1 integrin at the focal adhesions of chondrocytes 

cultivated on PEGT:PBT substrates with 300 g/mole PEG (Fig. 3a, b). The data presented 
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here are from 300-PEG 55:45 substrates and are representative of the 300 g/mole PEG 

polymers. No Fn or Vn-integrin receptors were detected in cells cultured on 1000 g/mole 

polymers at any time point (data not presented). 

 

Immunofluorescence imaging for CD44, a proteoglycan transmembrane receptor, revealed 

strikingly different results. At day 19, CD44 was seen to be expressed abundantly in 

chondrocytes cultivated on 1000 g/mole PEG substrates (Fig. 3c), but its expression was 

negligible in cells cultured on substrates with 300 g/mole PEG (Fig. 3d). 

 

Chondrocyte morphology 

Chondrocytes cultured on 4000-PEG 55:45 polymer substrates and all 1000 g/mole PEG 

substrates were spheroid in shape (Fig. 4a), although spreading increased with polymer PBT 

content (not shown). 

 

Cell morphology was generally spread on 300 g/mole PEG materials. Fig. 4b shows an 

example of the spread, fibroblastic morphology on the composition with the lowest PEGT 

content (30%). Chondrocytes that were adhered to the control TCPS exhibited spread and 

near-confluent morphologies (not shown). 

 

Protein adsorption 

Semi-quantitative gel analysis of Western blots of fibronectin (Fn) and vitronectin (Vn) 

adsorbed to polymers of different compositions revealed adsorption trends that depended on 

polymer composition (Fig. 5a). On the 4000-PEG 55:45 composition, there was 7 times more 

Vn than Fn. Polymer compositions with 1000 g/mole PEG molecular mass generally 

demonstrated increasing amounts of both Fn and Vn as the percentage of PEGT was 
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reduced from 70% to 40% (i.e. decreasing wettability). However, there was a pronounced 

increase in Fn across the same range of decreasing wettability, with the relative amount of 

Fn compared to Vn increasing from almost 1:8 to 1:1. 

 

On 300 g/mole PEG substrates, lower Fn but higher Vn adsorption correlated with wettability, 

as measured by captive bubble techniques on water-equilibrated polymer films. There was 

always greater adsorption of Fn on the 300 g/mole PEG polymers than either of the 1000 

g/mole or 4000 g/mole PEG molecular weight ranges (Fig. 5a). 

 

When individual adhesive protein adsorption was plotted against substrate-water contact 

angle, Fn adsorption exhibited large variability in the 40° to 50° contact angle range (Fig. 5b). 

Vn adsorption remained within a range, regardless of contact angle. There was no significant 

correlation between Vn or Fn adsorption and wettability. 

 

Cell attachment 

Chondrocyte numbers were determined by quantitation of DNA in cell lysates one day after 

seeding (Fig. 6a). The tissue culture polystyrene (TCPS) controls contained the most cells 

(17,400 cells/well). On PEGT:PBT polymer compositions however, the highest cell 

attachment was seen on 300-PEG 30:70 (9,200 cells/well). Polymers with the same length of 

PEG chains but with decreasing PEGT content exhibited higher cell numbers. This trend was 

seen at surfaces of each PEG molecular weight group. As the length of PEG molecules was 

shortened from 1000 g/mole to 300 g/mole while PEGT:PBT ratio was held constant, cell 

attachment displayed an increase. Differences in cell number when PEG chain lengths were 

shortened from 4000 g/mole to 1000 g/mole were less pronounced. Although low at the 

lowest (10°) and highest (90°) contact angles, chondrocyte attachment increased on some 
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substrates with contact angles between 40° and 54° (Figure 6b). However, cell attachment 

remained comparatively low on other substrates within the same general range of wettability, 

suggesting that wettability was not the sole parameter influencing chondrocyte attachment.  

 

When chondrocyte attachment was examined as a function of protein adsorption, it was seen 

that the amount of Fn adsorbed directly correlated with cell attachment (correlation was 

significant at the 0.01 level (2-tailed)) (Fig. 6c). However, no correlation could be made for 

cell attachment and Vn adsorption (Fig. 6c). 
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DISCUSSION 

 

There has recently been considerable interest in the development of “smart materials” that 

are able to regulate the behavior of adhered or encapsulated cells by releasing bioactive 

molecules into the local environment, or through extracellular protein/peptide mimetics built 

into the delivery substrates30, 31. However, the ability of materials to modulate downstream 

gene response without exogenous growth factors, coatings or complex ligand incorporation 

has the potential to greatly facilitate the development of tissue engineering and cellular 

therapies. As an illustration of this concept, a class of biphasic calcium phosphate ceramic 

induced de novo bone formation at non-osseous sites in vivo without requiring the delivery of 

cells or biologic compounds32, suggesting that the surface chemistry of the ceramic allowed 

the selective adsorption of morphogenetic proteins that trigger osteogenesis. It was also 

demonstrated using polymer libraries that substrate chemistry can influence the 

developmental lineages of embryonic stem cells33. Our data presented here with 

chondrocytes cultivated on PEGT:PBT substrates compliment these results, demonstrating 

that certain materials have an intrinsic potential to induce highly specific cell behavior, 

including modulation of phenotype (Figs. 2, 3, 4). 

 

Our objective for this study was to shed light on the interfacial events that integrate the 

materials, proteins, cell surface receptors and subsequent downstream gene expression by 

cells adhered to polymeric delivery substrates. Protein adsorption was shown to correlate 

with chondrocyte differentiation index and attachment (Figs. 2b, 6c). Interestingly, 

examination of data as a function of contact angle revealed an independence of protein 

adsorption and chondrocyte attachment on substrate wettability (Figs. 5, 6). These analyses 

suggest that differential adhesion protein adsorption to materials, and not simply surface 
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wettability, plays a significant role in regulating cell function. It should be noted, however, that 

since contact angles provide wettabilities that are integrated across the entire analyzed 

surface area, the actual situation is complex and is likely to be at least partially governed by 

the Angstrom/nano-scale phase separated structure of the underlying PEGT:PBT surface, as 

described earlier for this class of polymers34. 

 

The pro-chondrogenic potential of specific compositions of poly(ether ester) copolymers may 

be explained by examining substrate-protein and protein-receptor interactions. PEG 

molecules in water are in a liquid-like state, with rapid movement and a large excluded 

volume, with high PEG content surfaces providing the greatest steric interference35. This is 

also applicable to the PEGT:PBT substrates synthesized and studied herein, and was 

examined using PEG length and weight ratio. Changes in substrate composition and 

wettability have been shown to influence Fn conformation36, with conformational interplay 

between competitively adsorbed Fn and albumin at the material-protein interface enhancing 

FN activity37. The amount of surface PEG in other polymers has been shown to inversely 

correlate with Fn coating and affects its conformation38. The effects of protein folding have 

not been examined in this study, however, and is an area that needs further study with 

respect to the biomaterial interface. Both Vn and Fn can exist in either folded or extended 

conformations39, 40, binding to cells primarily via integrin binding to Arg-Gly-Asp (RGD) 

sequence domains41, 42, as well as by glycosaminoglycan (GAG)-binding motifs in the vicinity 

of the carboxyl terminus that bind to transmembrane proteoglycans43-47. Normal differentiated 

chondrocytes express and bind to their hyaluronic acid-rich extracellular matrix via CD44, a 

proteoglycan transmembrane receptor that can also bind to the GAG-binding domains of the 

adsorbed proteins48. Therefore, we postulate that the differentiated chondrogenic phenotype 
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observed on high density PEG polymers was due to CD44-protein interaction via GAG-

binding domains. 

 

Interestingly, it has been previously reported that Vn adsorption was not inhibited by 

increasing PEG concentration at a surface, regardless of substrate wettability49, and that Vn 

adsorbed equally well to untreated PS as to surface modified TCPS50. Both studies 

compliment our data that suggest that substrate wettability alone does not strongly influence 

Vn adsorption. Whereas native Vn does not have strong affinity for GAG, this affinity is 

greatly increased upon adsorption to surfaces due to the unfolding of the protein and 

subsequent exposure of GAG-binding domains51. Since up to 20% of Vn in serum is already 

in the extended GAG-binding conformation51, the likelihood of GAG-binding domains to be 

exposed to the chondrocyte plasma membrane is significant, and would be in addition to any 

binding domain exposure by adsorption to the hydrophobic PBT domains of the polymer 

substrate.  

 

Chondrocytes that exhibited higher chondrogenic gene expression (per the differentiation 

index) also maintained a spheroid morphology (Figs. 3, 4), whereas Fn adsorption resulted in 

chondrocyte dedifferentiation by the formation of focal adhesion plaques containing the α5β1 

integrin receptor (Fig. 3). The relationship between cell shape and differentiation has been 

widely described13, 14, 52, and we have previously shown that causing a change in cell shape 

by inhibiting RhoA activation enabled the reversion of the chondrogenic phenotype from a 

dedifferentiated state53. It was also recently reported that causing mesenchymal stem cells to 

conform to either a spread or spheroid shape differentially induced cell differentiation towards 

the osteogenic and adipogenic lineages, respectively, due to shape-driven influences in 

signaling pathways54. Chondrocytes from healthy human articular cartilage are known to 
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express α5β1 integrin, whereas αvβ3 is only weakly expressed55. However, in vitro 

monolayer culture on TCPS markedly increased surface expression of these integrins56 and 

resulted in chondrocyte dedifferentiation. Since spheroid chondrocytes in vitro also show 

greater incorporation of 35SO4 into GAG than spread chondrocytes57, the adsorption of Fn on 

substrates may also play a role in cell spreading, in addition to adhesion, and is a 

phenomenon not found in healthy cartilage in vivo. 

 

In conclusion, this study suggests a strong role of material modification in creating 

biomimetic and cellular effects that, until now, were principally expected from biological 

moieties such as growth factors. This was illustrated by modulation of the chondrogenic 

phenotype through differential induction of cell-surface receptors that coincided with different 

quantities of substrate-bound Fn or Vn. These events influence cell shape and downstream 

gene expression, and can be engineered by changing polymer composition to provide the 

molecular cues required for individual therapeutic applications. 
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Polymer composition, per applied 
nomenclature 

PEG molecular mass PEGT:PBT mass ratio 

4000-PEG 55:45 4000 55:45 
1000-PEG 70:30 1000 70:30 
1000-PEG 55:45 1000 55:45 
1000-PEG 40:60 1000 40:60 
300-PEG 70:30 300 70:30 
300-PEG 55:45 300 55:45 
300-PEG 30:70 300 30:70 
TCPS (tissue culture polystyrene) n/a n/a 

 
 
TABLE 1 
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TABLE AND FIGURE LEGENDS 
 

 

Table 1. 

A list of compositions of the model PEGT:PBT segmented copolymer system, per the 

nomenclature used in this study. 

 

Figure 1. 

Chemical structure of segmented poly(ether ester) [PEGT:PBT] copolymers, formed by 

polycondensation polymerization of hydrophilic PEG-containing segments and hydrophobic 

PBT segments. 

 

Figure 2.   

Chondrocyte CII/CI mRNA expression on substrates with varying PEG molecular mass and 

PEGT:PBT ratio (Fig. 2a), and CII/CI mRNA expression compared against Fn and Vn 

adsorption (Fig. 2b). The correlation between Fn adsorption and dedifferentiation was 

significant. In Fig. 2a, polymers compositions are arranged from left by PEG molecular mass 

of 4000, 1000 and 300 g /mole. 

 

Figure 3.   

Immunofluorescence images of the Vn receptor αvβ3 (Fig. 3a), Fn receptor α5β1 (Fig. 3b) 

expressed by chondrocytes cultivated on 300-PEG 55:45 substrates, as well as the 

proteoglycan receptor CD44 expressed by chondrocytes cultivated on 1000-PEG 70:30 (Fig. 

3c) and on 300-PEG 55:45 (Fig. 3d) at day 19.  Scale bars: Fig. 3a - 20 µm; Fig. 3b - 40 µm; 
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Fig. 3c - 10µm; Fig. 3d - 50µm. The larger field of view in Fig. 3d demonstrated the negligible 

expression of CD44 by chondrocytes cultivated on 300-PEG 55:45. 

 

Figure 4.   

SEM images of a rounded chondrocyte on 1000-PEG 70:30 (Fig. 4a) and chondrocytes with 

spread morphologies on 300-PEG 30:70 (Fig. 4b), both at 19 days post-seeding. Cells and 

polymer substrate are identified by the labels “C” and “P”, respectively. 

 

Figure 5. 

Relative adsorption of Vn and Fn on polymer substrates with varying PEG molecular mass 

and PEGT:PBT ratio (Fig. 5a). The bars correspond to Fn (clear) and Vn (solid). Polymers 

are arranged from left by PEG molecular mass of 4000, 1000 and 300 g/mole. Fig. 5b relates 

the adsorption of Fn and Vn to substrate wettability. 

 

Figure 6.   

Average number of cells at day 1 attached to substrates with varying PEG molecular mass 

and PEGT:PBT ratio (Fig. 6a). Polymers are arranged from left by PEG molecular mass of 

4000, 1000 and 300 g/mole. Substrate wettability versus cell number is plotted in Fig. 6b. 

The relationship between cell number at day 1 and protein adsorption is demonstrated in Fig. 

6c, where the correlation between cell attachment and Fn adsorption was significant. 
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