45 research outputs found

    Correction of scan time dependence of standard uptake values in oncological PET

    Get PDF
    BACKGROUND: Standard uptake values (SUV) as well as tumor-to-blood standard uptake ratios (SUR) measured with [ (18)F-]fluorodeoxyglucose (FDG) PET are time dependent. This poses a serious problem for reliable quantification since variability of scan start time relative to the time of injection is a persistent issue in clinical oncological Positron emission tomography (PET). In this work, we present a method for scan time correction of, both, SUR and SUV. METHODS: Assuming irreversible FDG kinetics, SUR is linearly correlated to K(m) (the metabolic rate of FDG), where the slope only depends on the shape of the arterial input function (AIF) and on scan time. Considering the approximately invariant shape of the AIF, this slope (the ‘Patlak time’) is an investigation independent function of scan time. This fact can be used to map SUR and SUV values from different investigations to a common time point for quantitative comparison. Additionally, it turns out that modelling the invariant AIF shape by an inverse power law is possible which further simplifies the correction procedure. The procedure was evaluated in 15 fully dynamic investigations of liver metastases from colorectal cancer and 10 dual time point (DTP) measurements. From each dynamic study, three ‘static scans’ at T=20,35,and 55 min post injection (p.i.) were created, where the last scan defined the reference time point to which the uptake values measured in the other two were corrected. The corrected uptake values were then compared to those actually measured at the reference time. For the DTP studies, the first scan (acquired at (78.1 ± 15.9) min p.i.) served as the reference, and the uptake values from the second scan (acquired (39.2 ± 9.9) min later) were corrected accordingly and compared to the reference. RESULTS: For the dynamic data, the observed difference between uncorrected values and values at reference time was (-52±4.5)% at T=20 min and (-31±3.7)% at T=35 min for SUR and (-30±6.6)% at T=20 min and (-16±4)% at T=35 min for SUV. After correction, the difference was reduced to (-2.9±6.6)% at T=20 min and (-2.7±5)% at T=35 min for SUR and (1.9% ± 6.2)% at T=20 min and (1.7 ± 3.3)% at T=35 min for SUV. For the DTP studies, the observed differences of SUR and SUV between late and early scans were (48 ± 11)% and (24 ± 8.4)%, respectively. After correction, these differences were reduced to (2.6 ± 6.9)% and (-2.4±7.3)%, respectively. CONCLUSION: If FDG kinetics is irreversible in the targeted tissue, correction of SUV and SUR for scan time variability is possible with good accuracy. The correction distinctly improves comparability of lesion uptake values measured at different times post injection

    Assessment of risks to honey bees posed by guttation

    Get PDF
    Background: Besides their nectar and pollen collecting activities, honey bees also forage water. Guttation droplets may be used as a water source. Measurements of high residue levels of some intrinsically highly toxic, systemic insecticides in guttation droplets triggered research activities on the potential risk for honey bees. Since 2009, a large number of studies have been conducted on the environmental conditions and factors favoring guttation, foraging of guttation, the occurrence of guttation in different crops, the frequency of guttation events and residue measurements in guttation droplets in different crops, at different growth stages and with different active ingredients. Different approaches of laboratory, semi-field and field studies were set up to address the potential risk of guttation to bees and to gain clarification whether and how this concern would need to be specifically addressed in the risk assessment for bees. Results: Occasionally increased mortalities of worker bees were reported from single events in some trials, when colonies were placed directly next to the sown maize crop treated with a systemic insecticide. However, there were no long-term colony effects (e.g. on colony strength and brood development) reported from any of the realistic worst case exposure trials conducted by either public research institutes or industry. Conclusion: The potential risk for bees is in the first instance dependent on the distance of the colonies to treated crops. Maize is considered as the worst case crop in terms of frequency, duration and intensity of guttation and of residue level of compounds found in guttation liquid. Though increased worker bee mortality on individual days was seen in some of the field studies where hives were placed directly at guttating maize fields, adverse effects to colony vitality, colony and brood development were never observed. Keywords: Guttation, risk assessment, pesticides, honey bees

    Functional aplasia of the contralateral A1 segment influences clinical outcome in patients with occlusion of the distal internal carotid artery

    Get PDF
    Background: The importance of an A1 aplasia remains unclear in stroke patients. In this work, we analyze the impact of an A1 aplasia contralateral to an acute occlusion of the distal internal carotid artery (ICA) on clinical outcomes. Methods: We conducted a retrospective study of consecutive stroke patients treated with mechanical thrombectomy at 12 tertiary care centers between January 2015 and February 2021 due to an occlusion of the distal ICA. Functional A1 aplasia was defined as the absence of A1 or hypoplastic A1 (>50% reduction to the contralateral site). Functional independence was measured by the modified Rankin Scale (mRS ≤ 2). Results: In total, 81 out of 1068 (8%) patients had functional A1 aplasia contralateral to distal ICA occlusion. Patients with functional contralateral A1 aplasia were more severely affected on admission (median NIHSS 18, IQR 15–23 vs. 17, IQR 13–21; aOR: 0.672, 95% CI: 0.448–1.007, p = 0.054) and post-interventional ischemic damage was larger (median ASPECTS 5, IQR 1–7, vs. 6, IQR 3–8; aOR: 1.817, 95% CI: 1.184–2.789, p = 0.006). Infarction occurred more often within the ipsilateral ACA territory (20/76, 26% vs. 110/961, 11%; aOR: 2.482, 95% CI: 1.389–4.437, p = 0.002) and both ACA territories (8/76, 11% vs. 5/961, 1%; aOR: 17.968, 95% CI: 4.979–64.847, p ≤ 0.001). Functional contralateral A1 aplasia was associated with a lower rate of functional independence at discharge (6/81, 8% vs. 194/965, 20%; aOR: 2.579, 95% CI: 1.086–6.122, p = 0.032) and after 90 days (5/55, 9% vs. 170/723, 24%; aOR: 2.664, 95% CI: 1.031–6.883, p = 0.043). Conclusions: A functional A1 aplasia contralateral to a distal ICA occlusion is associated with a poorer clinical outcome

    Monitoring scanner calibration using the image-derived arterial blood SUV in whole-body FDG-PET

    No full text
    Abstract Background The current de facto standard for quantification of tumor metabolism in oncological whole-body PET is the standardized uptake value (SUV) approach. SUV determination requires accurate scanner calibration. Residual inaccuracies of the calibration lead to biased SUV values. Especially, this can adversely affect multicenter trials where it is difficult to ensure reliable cross-calibration across participating sites. The goal of the present work was the evaluation of a new method for monitoring scanner calibration utilizing the image-derived arterial blood SUV (BSUV) averaged over a sufficiently large number of whole-body FDG-PET investigations. Data of 681 patients from three sites which underwent routine 18F-FDG PET/CT or PET/MR were retrospectively analyzed. BSUV was determined in the descending aorta using a three-dimensional ROI concentric to the aorta’s centerline. The ROI was delineated in the CT or MRI images and transferred to the PET images. A minimum ROI volume of 5 mL and a concentric safety margin to the aortic wall was observed. Mean BSUV, standard deviation (SD), and standard error of the mean (SE) were computed for three groups of patients at each site, investigated 2 years apart, respectively, with group sizes between 53 and 100 patients. Differences of mean BSUV between the individual groups and sites were determined. Results SD (SE) of BSUV in the different groups ranged from 14.3 to 20.7% (1.7 to 2.8%). Differences of mean BSUV between intra-site groups were small (1.1–6.3%). Only one out of nine of these differences reached statistical significance. Inter-site differences were distinctly larger (12.6–25.1%) and highly significant (P<0.001). Conclusions Image-based determination of the group-averaged blood SUV in modestly large groups of whole-body FDG-PET investigations is a viable approach for ensuring consistent scanner calibration over time and across different sites. We propose this approach as a quality control and cross-calibration tool augmenting established phantom-based procedures

    The ADiWa Project - on the Way to Just-in-Time Process Dynamics based on Events from the Internet of Things

    No full text
    In this paper, we introduce a concept, which focuses on innovative commercial sy stem implementations reflecting process-embedded events from the Internet of Things. The developed concepts are derived from experiences applying recent resea rch advances to industry scenarios. The rationale behind the overall concept is twofold: while transparency is increased by event-based methodologies in the co ntext of the Internet of Things, the agility of business processes is fostered by enhanced business process models, orchestration support, execution control, and user assistance
    corecore