915 research outputs found
Extrapolation-Based Implicit-Explicit Peer Methods with Optimised Stability Regions
In this paper we investigate a new class of implicit-explicit (IMEX) two-step
methods of Peer type for systems of ordinary differential equations with both
non-stiff and stiff parts included in the source term. An extrapolation
approach based on already computed stage values is applied to construct IMEX
methods with favourable stability properties. Optimised IMEX-Peer methods of
order p = 2, 3, 4, are given as result of a search algorithm carefully designed
to balance the size of the stability regions and the extrapolation errors.
Numerical experiments and a comparison to other implicit-explicit methods are
included.Comment: 21 pages, 6 figure
Entropy-Preserving Coupling Conditions for One-dimensional Euler Systems at Junctions
This paper is concerned with a set of novel coupling conditions for the
one-dimensional Euler system with source terms at a junction of
pipes with possibly different cross-sectional areas. Beside conservation of
mass, we require the equality of the total enthalpy at the junction and that
the specific entropy for pipes with outgoing flow equals the convex combination
of all entropies that belong to pipes with incoming flow. Previously used
coupling conditions include equality of pressure or dynamic pressure. They are
restricted to the special case of a junction having only one pipe with outgoing
flow direction. Recently, Reigstad [SIAM J. Appl. Math., 75:679--702, 2015]
showed that such pressure-based coupling conditions can produce non-physical
solutions for isothermal flows through the production of mechanical energy. Our
new coupling conditions ensure energy as well as entropy conservation and also
apply to junctions connecting an arbitrary number of pipes with flexible flow
directions. We prove the existence and uniqueness of solutions to the
generalised Riemann problem at a junction in the neighbourhood of constant
stationary states which belong to the subsonic region. This provides the basis
for the well-posedness of the homogeneous and inhomogeneous Cauchy problems for
initial data with sufficiently small total variation.Comment: 17 pages, 2 figure
A Bramble-Pasciak conjugate gradient method for discrete Stokes equations with random viscosity
We study the iterative solution of linear systems of equations arising from
stochastic Galerkin finite element discretizations of saddle point problems. We
focus on the Stokes model with random data parametrized by uniformly
distributed random variables and discuss well-posedness of the variational
formulations. We introduce a Bramble-Pasciak conjugate gradient method as a
linear solver. It builds on a non-standard inner product associated with a
block triangular preconditioner. The block triangular structure enables more
sophisticated preconditioners than the block diagonal structure usually applied
in MINRES methods. We show how the existence requirements of a conjugate
gradient method can be met in our setting. We analyze the performance of the
solvers depending on relevant physical and numerical parameters by means of
eigenvalue estimates. For this purpose, we derive bounds for the eigenvalues of
the relevant preconditioned sub-matrices. We illustrate our findings using the
flow in a driven cavity as a numerical test case, where the viscosity is given
by a truncated Karhunen-Lo\`eve expansion of a random field. In this example, a
Bramble-Pasciak conjugate gradient method with block triangular preconditioner
outperforms a MINRES method with block diagonal preconditioner in terms of
iteration numbers.Comment: 19 pages, 1 figure, submitted to SIAM JU
Extrapolation-Based Super-Convergent Implicit-Explicit Peer Methods with A-stable Implicit Part
In this paper, we extend the implicit-explicit (IMEX) methods of Peer type
recently developed in [Lang, Hundsdorfer, J. Comp. Phys., 337:203--215, 2017]
to a broader class of two-step methods that allow the construction of
super-convergent IMEX-Peer methods with A-stable implicit part. IMEX schemes
combine the necessary stability of implicit and low computational costs of
explicit methods to efficiently solve systems of ordinary differential
equations with both stiff and non-stiff parts included in the source term. To
construct super-convergent IMEX-Peer methods with favourable stability
properties, we derive necessary and sufficient conditions on the coefficient
matrices and apply an extrapolation approach based on already computed stage
values. Optimised super-convergent IMEX-Peer methods of order s+1 for s=2,3,4
stages are given as result of a search algorithm carefully designed to balance
the size of the stability regions and the extrapolation errors. Numerical
experiments and a comparison to other IMEX-Peer methods are included.Comment: 22 pages, 4 figures. arXiv admin note: text overlap with
arXiv:1610.0051
Stability of explicit one-step methods for P1-finite element approximation of linear diffusion equations on anisotropic meshes
We study the stability of explicit one-step integration schemes for the
linear finite element approximation of linear parabolic equations. The derived
bound on the largest permissible time step is tight for any mesh and any
diffusion matrix within a factor of , where is the spatial
dimension. Both full mass matrix and mass lumping are considered. The bound
reveals that the stability condition is affected by two factors. The first one
depends on the number of mesh elements and corresponds to the classic bound for
the Laplace operator on a uniform mesh. The other factor reflects the effects
of the interplay of the mesh geometry and the diffusion matrix. It is shown
that it is not the mesh geometry itself but the mesh geometry in relation to
the diffusion matrix that is crucial to the stability of explicit methods. When
the mesh is uniform in the metric specified by the inverse of the diffusion
matrix, the stability condition is comparable to the situation with the Laplace
operator on a uniform mesh. Numerical results are presented to verify the
theoretical findings.Comment: Revised WIAS Preprin
On Asymptotic Global Error Estimation and Control of Finite Difference Solutions for Semilinear Parabolic Equations
The aim of this paper is to extend the global error estimation and control
addressed in Lang and Verwer [SIAM J. Sci. Comput. 29, 2007] for initial value
problems to finite difference solutions of semilinear parabolic partial
differential equations. The approach presented there is combined with an
estimation of the PDE spatial truncation error by Richardson extrapolation to
estimate the overall error in the computed solution. Approximations of the
error transport equations for spatial and temporal global errors are derived by
using asymptotic estimates that neglect higher order error terms for
sufficiently small step sizes in space and time. Asymptotic control in a
discrete -norm is achieved through tolerance proportionality and uniform
or adaptive mesh refinement. Numerical examples are used to illustrate the
reliability of the estimation and control strategies
POD model order reduction with space-adapted snapshots for incompressible flows
We consider model order reduction based on proper orthogonal decomposition
(POD) for unsteady incompressible Navier-Stokes problems, assuming that the
snapshots are given by spatially adapted finite element solutions. We propose
two approaches of deriving stable POD-Galerkin reduced-order models for this
context. In the first approach, the pressure term and the continuity equation
are eliminated by imposing a weak incompressibility constraint with respect to
a pressure reference space. In the second approach, we derive an inf-sup stable
velocity-pressure reduced-order model by enriching the velocity reduced space
with supremizers computed on a velocity reference space. For problems with
inhomogeneous Dirichlet conditions, we show how suitable lifting functions can
be obtained from standard adaptive finite element computations. We provide a
numerical comparison of the considered methods for a regularized lid-driven
cavity problem
A Third-Order Weighted Essentially Non-Oscillatory Scheme in Optimal Control Problems Governed by Nonlinear Hyperbolic Conservation Laws
The weighted essentially non-oscillatory (WENO) methods are popular and
effective spatial discretization methods for nonlinear hyperbolic partial
differential equations. Although these methods are formally first-order
accurate when a shock is present, they still have uniform high-order accuracy
right up to the shock location. In this paper, we propose a novel third-order
numerical method for solving optimal control problems subject to scalar
nonlinear hyperbolic conservation laws. It is based on the
first-disretize-then-optimize approach and combines a discrete adjoint WENO
scheme of third order with the classical strong stability preserving
three-stage third-order Runge-Kutta method SSPRK3. We analyze its approximation
properties and apply it to optimal control problems of tracking-type with
non-smooth target states. Comparisons to common first-order methods such as the
Lax-Friedrichs and Engquist-Osher method show its great potential to achieve a
higher accuracy along with good resolution around discontinuities.Comment: 19 pages, 5 figures, 3 table
- …