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Abstract. We study the stability of explicit one-step integration schemes for the linear finite
element approximation of linear parabolic equations. The derived bound on the largest permissible
time step is tight for any mesh and any diffusion matrix within a factor of 2(d + 1), where d is the
spatial dimension. Both full mass matrix and mass lumping are considered. The bound reveals that
the stability condition is affected by two factors. The first depends on the number of mesh elements
and corresponds to the classic bound for the Laplace operator on a uniform mesh. The second factor
reflects the effects of the interplay of the mesh geometry and the diffusion matrix. It is shown that
it is not the mesh geometry itself but the mesh geometry in relation to the diffusion matrix that is
crucial to the stability of explicit methods. When the mesh is uniform in the metric specified by the
inverse of the diffusion matrix, the stability condition is comparable to the situation with the Laplace
operator on a uniform mesh. Numerical results are presented to verify the theoretical findings.
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1. Introduction. Adaptive meshes are commonly used for the numerical solution
of partial differential equations (PDEs) to enhance computational efficiency, but there
are still gaps in the mathematical understanding of the effects of the variation of
element size and shape on the properties of numerical schemes for solving PDEs.

In this paper, we are concerned with the stability of explicit one-step time integra-
tion of linear finite element approximation with general nonuniform simplicial meshes
for the initial-boundary value problem (IBVP)





∂tu = ∇ · (D∇u) , x ∈ Ω, t ∈ (0, T ] ,
u(x, t) = 0, x ∈ ΓD, t ∈ (0, T ] ,
D∇u(x, t) · n = 0, x ∈ ΓN , t ∈ (0, T ] ,
u(x, 0) = u0(x), x ∈ Ω,

(1)

where Ω ⊂ Rd (d ≥ 1) is an interval, a bounded polygonal or polyhedral domain,
ΓD ∪ ΓN = ∂Ω, ΓD has a positive (d− 1)-volume, u0 is a given initial function, and
D is the diffusion matrix which is assumed to be symmetric and uniformly positive
definite on Ω. In this study, we also assume that D is time independent, i.e., D = D(x).
Problem (1) is isotropic when D(x) = α(x)I for all x in Ω, where α is a scalar function

∗Received by the editors December 17, 2013; accepted for publication (in revised form) March
29, 2016; published electronically May 26, 2016. The research of the authors was supported in part
by the NSF (USA) under grant DMS-1115118, the DFG (Germany) under grant KA3215/2-1, and
the Darmstadt Graduate Schools of Excellence Computational Engineering and Energy Science and
Engineering.

http://www.siam.org/journals/sinum/54-3/94953.html
†Department of Mathematics, The University of Kansas, Lawrence, KS 66045 (whuang@ku.edu).
‡Weierstrass Institute, Berlin 10117, Germany (kamenski@wias-berlin.de).
§Department of Mathematics, TU Darmstadt, Darmstadt D-64289, Germany (lang@mathematik.tu-

darmstadt.de).

1612

D
ow

nl
oa

de
d 

11
/1

0/
17

 to
 1

29
.2

37
.4

6.
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213425613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.siam.org/journals/sinum/54-3/94953.html
mailto:whuang@ku.edu
mailto:kamenski@wias-berlin.de
mailto:lang@mathematik.tu-darmstadt.de
mailto:lang@mathematik.tu-darmstadt.de
mailto:lang@mathematik.tu-darmstadt.de


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILITY OF EXPLICIT METHODS WITH ADAPTIVE FE 1613

and I is the d× d identity matrix. Otherwise, the problem is an anisotropic diffusion
problem, which we shall consider in this work. Anisotropic diffusion arises in various
areas of science and engineering, including plasma physics [7], petroleum reservoir
simulation [3, 20], and image processing [17, 25].

Assume that u0 ∈ H1
D(Ω) =

{
v ∈ H1(Ω) : v = 0 on ΓD

}
. Then, if u is sufficiently

smooth, we have the stability estimates
{
‖u(·, t)‖L2(Ω) ≤ ‖u0‖L2(Ω), t ∈ (0, T ] ,
|||u(·, t)|||H1(Ω) ≤ |||u0|||H1(Ω), t ∈ (0, T ] ,(2)

where |||u(·, t)|||H1(Ω) ≡ ‖D1/2∇u‖L2(Ω) is the energy norm of u(·, t). It is essential that
a numerical scheme for (1) preserves the stability estimates. The stability of the time
integration depends on the largest eigenvalue of the system related to the numerical
scheme, which, in turn, depends on the underlying meshes and the coefficients of the
IBVP.

For a uniform mesh and the Laplace operator, it is well known that the largest
permissible time step is proportional to the square of the element diameter.

In the case of a nonuniform mesh or a variable diffusion matrix, the situation
becomes more complicated. Essentially, one needs to estimate the largest eigenvalues
of M−1A, where M and A are the mass and stiffness matrices corresponding to the
discretization of the IBVP. This can be done by estimating the extreme eigenvalues
of M and A. Tight bounds on those of the mass matrix M for linear finite elements
with locally quasi-uniform meshes are available in the literature and are typically
proportional to the extremal mesh element volumes [4, 5, 24], whereas those for the
stiffness matrix A are more difficult to obtain, and only a few results are available in
the literature for the case of nonuniform meshes. For example, Fried [4] shows how to
obtain these bounds for the finite element approximation of the Laplace operator for
general nonuniform meshes using local element mass and stiffness matrices. A similar
argument was used by Shewchuk [23] to develop a bound on the largest eigenvalue
of M−1A in terms of the maximum eigenvalues of local element matrices for the
case of a lumped mass matrix. Graham and McLean [5] study the finite/boundary
element approximation of a general differential/integral operator on locally quasi-
uniform meshes in terms of patch volumes and aspect ratios. Du, Wang, and Zhu [1]
obtain bounds on the extreme eigenvalues of the stiffness matrix for the Galerkin
approximation of a general diffusion operator in terms of element geometry. Zhu
and Du [26, 27] further develop bounds on the largest permissible time step for time
dependent problems. It is worth mentioning that these existing works allow anisotropic
meshes. However, the interplay between the mesh geometry and the diffusion matrix
is not really taken into account, which, as we will see, is crucially important for the
stability of explicit integration schemes. A notable exception is the bound obtained by
Shewchuk [23], which takes the effects of the diffusion coefficients fully into account;
see Remark 8 for details and Example 12 for a numerical example. Moreover, the
existing analysis either employs some mesh regularity assumptions such as the local
uniformity or involves parameters in final estimates that are related to mesh regularity,
such as the maximum ratio of volumes of neighboring elements and/or the maximum
number of elements in a patch.

The objective of this work is to provide estimates for the largest permissible time
step which are accurate and tight for any mesh and any diffusion matrix. We utilize
bounds recently obtained by Kamenski, Huang, and Xu [16] on the extreme eigenvalues
of M and the largest eigenvalue of A for a general diffusion operator with arbitrary
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Fig. 1. Reference and mesh elements, mapping FK , ith node and its patch ωi.

assumption on the mesh regularity is made in the development. We show that the
alignment of the mesh with the diffusion matrix plays a crucial role in the stability
condition: the largest permissible time step depends only on the number of mesh
elements and the mesh geometry in relation to the diffusion matrix. In particular, if
the mesh is uniform in the metric specified by D−1, the stability condition is essentially
the same as that for the Laplace operator with a uniform mesh. Although we consider
only linear finite elements, the presented analysis is applicable to high order finite
elements without major modifications [13].

The paper is organized as follows. We start in section 2 with the problem setting
and a detailed description of mesh quality measures which are needed for the geometric
interpretations of stability estimates. The main results on stability are given in
section 3; both the full mass matrix and mass lumping are considered. Numerical
examples to demonstrate the theoretical findings are presented in section 4, including
a two-dimensional groundwater flow problem. Conclusions are drawn in section 5.

2. Linear finite element approximation. We consider the standard linear
finite element method for the spatial discretization of IBVP (1).

We assume that a family {Th} of simplicial meshes is given for Ω. While having
adaptive meshes in mind, we consider the meshes to be general nonuniform ones, which
may contain elements of small size and large aspect ratio. Let K be an arbitrary
element of Th, K̂ the reference element, and ωi the element patch of the ith vertex
(Figure 1). Element and patch volumes are denoted by

|K| and |ωi| =
∑

K∈ωi

|K|.

For each mesh element K ∈ Th let FK be the invertible affine mapping from K̂ to
K (Figure 1) and F ′K its Jacobian matrix. Note that F ′K is a constant matrix with
det(F ′K) = |K| (for simplicity, we assume that K̂ is equilateral with |K̂| = 1).

Let V h be the linear finite element space associated with mesh Th. Defining
V h

D = V h ∩H1
D(Ω) =

{
vh ∈ V h : vh = 0 on ΓD

}
, the piecewise linear finite element

solution uh(t) ∈ V h
D , t ∈ (0, T ] is defined by

∫

Ω
vh∂tu

h dx = −
∫

Ω
∇vh · D∇uh dx, ∀vh ∈ V h

D , t ∈ (0, T ] ,(3)

subject to the initial condition
∫

Ω
uh(x, 0)vh dx =

∫

Ω
u0(x)vh dx, ∀vh ∈ V h

D .(4)

Fig. 1. Reference and mesh elements, mapping FK , ith node, and its patch ωi.

meshes. The obtained stability condition expressed in terms of matrix entries is tight
within a constant factor which is independent of the mesh and the diffusion matrix.
No assumption on the mesh regularity is made in the development. We show that the
alignment of the mesh with the diffusion matrix plays a crucial role in the stability
condition: the largest permissible time step depends only on the number of mesh
elements and the mesh geometry in relation to the diffusion matrix. In particular, if
the mesh is uniform in the metric specified by D−1, the stability condition is essentially
the same as that for the Laplace operator with a uniform mesh. Although we consider
only linear finite elements, the presented analysis is applicable to high order finite
elements without major modifications [13].

The paper is organized as follows. We start in section 2 with the problem setting
and a detailed description of mesh quality measures which are needed for the geometric
interpretations of stability estimates. The main results on stability are given in
section 3; both the full mass matrix and mass lumping are considered. Numerical
examples to demonstrate the theoretical findings are presented in section 4, including a
two-dimensional (2D) groundwater flow problem. Conclusions are drawn in section 5.

2. Linear finite element approximation. We consider the standard linear
finite element method for the spatial discretization of IBVP (1).

We assume that a family {Th} of simplicial meshes is given for Ω. While having
adaptive meshes in mind, we consider the meshes to be general nonuniform ones, which
may contain elements of small size and large aspect ratio. Let K be an arbitrary
element of Th, K̂ the reference element, and ωi the element patch of the ith vertex
(Figure 1). Element and patch volumes are denoted by

|K| and |ωi| =
∑

K∈ωi

|K|.

For each mesh element K ∈ Th let FK be the invertible affine mapping from K̂ to
K (Figure 1) and F ′K its Jacobian matrix. Note that F ′K is a constant matrix with
det(F ′K) = |K| (for simplicity, we assume that K̂ is equilateral with |K̂| = 1).

Let V h be the linear finite element space associated with mesh Th. Defining
V h

D = V h ∩H1
D(Ω) =

{
vh ∈ V h : vh = 0 on ΓD

}
, the piecewise linear finite element

solution uh(t) ∈ V h
D , t ∈ (0, T ], is defined by

∫

Ω
vh∂tu

h dx = −
∫

Ω
∇vh · D∇uh dx ∀vh ∈ V h

D , t ∈ (0, T ] ,(3)
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STABILITY OF EXPLICIT METHODS WITH ADAPTIVE FE 1615

subject to the initial condition
∫

Ω
uh(x, 0)vh dx =

∫

Ω
u0(x)vh dx ∀vh ∈ V h

D .(4)

We denote the number of the elements of Th by N and the number of the interior
vertices plus the vertices associated with the Neumann boundary condition by Nvi. If
we express uh as

uh(x, t) =
Nvi∑

j=1
uh

j (t)φj(x),

where φj is the linear basis function associated to the jth vertex (j = 1, . . . , Nvi), from
(3) and (4) we obtain

(5) MUt = −AU , U(0) = U0,

where U =
(
uh

1 , . . . , u
h
Nvi

)T and M and A are the mass and the stiffness matrices,

(6) Mij =
∫

Ω
φiφj dx, Aij =

∫

Ω
∇φi · D∇φj dx, i, j = 1, . . . , Nvi.

We shall investigate how the geometry of the mesh and the anisotropy of the diffusion
matrix affect the stability of explicit one-step methods for integrating (5). In the
following we assume that the mesh is fixed for all time steps.

2.1. Mathematical description of nonuniform meshes; mesh quality
measures. An adaptive mesh, which is typically nonuniform, can be generated
as a uniform one in the metric specified by a given metric tensor, which is always
assumed to be symmetric and uniformly positive definite in Ω [11]. On the other
hand, a metric tensor can be defined for any given mesh such that all elements are
uniform in the metric specified by this tensor [14]. Thus, it is natural to consider
nonuniform meshes in relation to a given metric tensor. In the following, we describe
several quality measures and mathematical characterizations for (nonuniform) meshes
in terms of a given metric tensor M = M(x). As we will see in section 3, the matching
between the mesh metric tensor and the diffusion matrix plays a crucial role for the
stability condition. In our analysis, we slightly adjust the original definitions of the
mesh quality measures in [10] (see also [12, 14]).

Let

(7) MK = 1
|K|

∫

K

M dx, |K|M = |K|det(MK)
1
2 , |Ω|M,h =

∑

K∈Th

|K|M.

Note that MK is the average of M over the element K and |K|M and |Ω|M,h are
approximate volumes of K and Ω in the metric M, viz.,

|K|M ≈
∫

K

det
(
M(x)

) 1
2 dx and |Ω|M,h ≈

∑

K∈Th

∫

K

det
(
M(x)

) 1
2 dx = |Ω|M.

Hereafter, without confusion we will call |K|M and |Ω|M,h the volumes of K and Ω in
the metric M, respectively. We also define the average diameter of element K and the
global average element diameter with respect to M as

hK,M = |K|
1
d

M and hM =
(

1
N
|Ω|M,h

) 1
d

.
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1616 WEIZHANG HUANG, LENNARD KAMENSKI, AND JENS LANG

The diameter hK of K is defined as the length of the longest edge of K.
With this notation established, we now are ready to describe the mesh quality

measures. The first one, the equidistribution quality measure, is defined as the ratio of
the average element volume to the volume of K, both measured in the metric specified
by MK ,

(8) Qeq,M(K) =
1
N |Ω|M,h

|K|M
=
(

hM
hK,M

)d

.

It satisfies

(9) 0 < Qeq,M(K) <∞, 1
N

∑

K∈Th

1
Qeq,M(K) = 1, max

K∈Th

Qeq,M(K) ≥ 1.

The second one, the alignment quality measure, is local (elementwise) and measures
how closely the principal directions of the circumscribed ellipsoid of K are aligned
with the eigenvectors of MK , and the semilengths of the principal axes are inversely
proportional to the square root of the eigenvalues of MK . It is defined as

(10) Qali,M(K) =

∥∥∥(F ′K)−1M−1
K (F ′K)−T

∥∥∥
2

det
(

(F ′K)−1M−1
K (F ′K)−T

) 1
d

= h2
K,M

∥∥∥(F ′K)−1M−1
K (F ′K)−T

∥∥∥
2
.

Since ‖(F ′K)−1M−1
K (F ′K)−T ‖2 ≥ det((F ′K)−1M−1

K (F ′K)−T )
1
d , Qali,M always satisfies

1 ≤ Qali,M(K) <∞

with Qali,M(K) = 1 if and only if K is equilateral with respect to MK . The alignment
quality measure can be seen as an alternative to the aspect ratio of K in the metric
specified by MK , and it satisfies

(11) Qali,M(K) ≤ ĥ2 ·
(
hK,M
ρK,M

)2
,

where ĥ is the length of the longest edge of K̂ and ρK,M is the diameter of the largest
sphere inscribed in the element K viewed in the metric MK . To show this, we consider
two points x1,x2 ∈ K and the corresponding points ξ1 = F−1

K (x1) and ξ2 = F−1
K (x2)

in K̂. The distance between x1 and x2 in the metric MK is

‖x1 − x2‖2MK
= (x1 − x2)TMK (x1 − x2) = (ξ1 − ξ2)T (F ′K)TMKF

′
K (ξ1 − ξ2)

= ‖ξ1 − ξ2‖22 ·
(ξ1 − ξ2)T

‖ξ1 − ξ2‖2
(F ′K)TMKF

′
K

(ξ1 − ξ2)
‖ξ1 − ξ2‖2

≤ ĥ2 · (ξ1 − ξ2)T

‖ξ1 − ξ2‖2
(F ′K)TMKF

′
K

(ξ1 − ξ2)
‖ξ1 − ξ2‖2

.

If we take the minimum over all pairs of opposing points on the largest sphere inscribed
in the element K viewed in the metric MK , then

ρ2
K,M ≤ ĥ2λmin

(
(F ′K)TMKF

′
K

)
.
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STABILITY OF EXPLICIT METHODS WITH ADAPTIVE FE 1617

Hence,

(12)
∥∥∥(F ′K)−1M−1

K (F ′K)−T
∥∥∥

2
= 1
λmin

(
(F ′K)TMKF ′K

) ≤
(

ĥ

ρK,M

)2

,

which, together with (10), gives (11).
The element quality measure is defined as a combination of Qali,M and Qeq,M,

(13) QM(K) = Qali,M(K) ·
(
Qeq,M(K)

) 2
d = h2

M

∥∥∥(F ′K)−1M−1
K (F ′K)−T

∥∥∥
2
.

It measures how far K is from being equilateral with a constant volume when viewed
in the metric specified by M. By definition and from (12) it follows that

(14) 0 < QM(K) ≤ ĥ2
(
hM
ρK,M

)2
<∞.

When a mesh is uniform with respect to M (we will refer to it as an M-uniform mesh),
it satisfies

(15) Qali,M(K) = 1 and Qeq,M(K) = 1 ∀K ∈ Th,

which is equivalent to

(16) QM(K) = 1 ∀K ∈ Th.

Indeed, (16) follows directly from (15). On the other hand, since Qali,M ≥ 1, (16)
implies Qeq,M(K) ≤ 1 for all K. Due to the property (9), the latter is only possible if
Qeq,M(K) = 1 for all K, which, in turn, implies Qali,M(K) = 1 for all K.

It is worth mentioning that an M-uniform mesh satisfies

(17) (F ′K)−1M−1
K (F ′K)−T = h−2

M I ∀K ∈ Th,

since (15) implies that all eigenvalues of (F ′K)−1M−1
K (F ′K)−T are equal to hM. On the

other hand, when a mesh is far from being M-uniform, then

Qali,M(K)� 1 or max
K

Qeq,M(K)� 1,

and therefore
max

K
QM(K)� 1.

2.2. Preliminary results. In this subsection we present a few properties of
the mass matrix M and the stiffness matrix A of linear finite elements, which will
be used repeatedly in our analysis. Throughout the paper the less-than-or-equal-to
sign between matrix terms means that the difference between the right-hand side and
left-hand side terms is positive semidefinite.

Lemma 2.1 (see [16, sect. 3]). The linear finite element mass matrix M and its
diagonal part MD satisfy

(18) 1
2MD ≤M ≤

d+ 2
2 MD and Mii = 2|ωi|

(d+ 1)(d+ 2) , i = 1, . . . , Nvi.
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1618 WEIZHANG HUANG, LENNARD KAMENSKI, AND JENS LANG

Lemma 2.2. Let Mlump be the lumped linear finite element mass matrix defined
through

Mii,lump =
∫

Ω
φi(x) ·

Nvi∑

j=1
φj(x) dx, i = 1, . . . , Nvi.

Then

(19) 2|ωi|
(d+ 1)(d+ 2) ≤Mii,lump ≤

|ωi|
d+ 1 .

Proof. Since

φi(x) ≤
Nvi∑

j=1
φj(x) ≤ 1,

we have

Mii,lump ≥
∫

Ω
φ2

i (x) dx =
∑

K∈ωi

∫

K

φ2
i (x) dx =

∑

K∈ωi

2|K|
(d+ 1)(d+ 2) = 2|ωi|

(d+ 1)(d+ 2)

and
Mii,lump ≤

∫

Ω
φi(x) dx =

∑

K∈ωi

∫

K

φi(x) dx =
∑

K∈ωi

|K|
d+ 1 = |ωi|

d+ 1 .

Lemma 2.3. The linear finite element mass matrix M and the lumped mass matrix
Mlump satisfy

1
d+ 2Mlump ≤M ≤

d+ 2
2 Mlump.

Proof. SinceMD ≤Mlump, we get the upper bound directly from (18). Combining
the lower bound in (18) with the upper bound in (19) gives

1
d+ 2Mlump ≤

1
(d+ 2)(d+ 1) diag (|ω1|, . . . , |ωNvi

|) = 1
2MD ≤M.

Lemma 2.4 (see [16, sect. 4]). The linear finite element stiffness matrix A and
its diagonal part AD satisfy

(20) A ≤ (d+ 1)AD.

Lemma 2.5. Let DK be the average of the diffusion matrix D over K,

DK = 1
|K|

∫

K

D(x) dx.

Then the diagonal entries of the linear finite element stiffness matrix A are bounded by

(21) C∇̂
∑

K∈ωi

|K| · λmin
(
(F ′K)−1DK(F ′K)−T )

≤ Aii ≤ C∇̂
∑

K∈ωi

|K| · λmax
(
(F ′K)−1DK(F ′K)−T )

,

where C∇̂ = d
d+1 (

√
d+1
d! )

2
d
.
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Proof. From (6) we have

Aii =
∫

Ω
∇φT

i D∇φi dx =
∑

K∈ωi

∫

K

∇φT
i D∇φi dx =

∑

K∈ωi

|K| ∇φT
i DK∇φi.

Denote the gradient operator in K̂ by ∇̂ = ∂
∂ξ . By the chain rule, ∇ = (F ′K)−T ∇̂ and

Aii =
∑

K∈ωi

|K| ∇̂φ̂T
i (F ′K)−1DK(F ′K)−T ∇̂φ̂i(22)

≤
∑

K∈ωi

|K| ∇̂φ̂T
i ∇̂φ̂iλmax

(
(F ′K)−1DK(F ′K)−T )

.

Recall that K̂ is taken to be equilateral. Thus, ∇̂φ̂T
i ∇̂φ̂i = C∇̂ for all i = 1, . . . , d+ 1.

Consequently,
Aii ≤ C∇̂

∑

K∈ωi

|K| λmax
(
(F ′K)−1DK(F ′K)−T )

.

Similarly, we can obtain the left inequality of (21).
Remark 1. From (13), with M being replaced by D−1, the bound (21) on Aii can

be expressed in terms of the element quality measure QD-1(K) as

(23) Aii ≤ C∇̂h−2
D−1

∑

K∈ωi

|K|QD-1(K).

Remark 2 (D−1-nonobtuse meshes). Note that Lemma 2.4 is very general and
valid for any given mesh. It implies that

(24) λmax(A) ≤ (d+ 1) max
i
Aii.

This bound can be sharpened for some special types of meshes. For example, if a mesh
has no obtuse angles with respect to D−1, then A is an M -matrix (its off-diagonal
entries are nonpositive) and

∑
j Aij ≥ 0 for all i (e.g., see the proof of Theorem 2.1

of [18]). From the Gershgorin circle theorem we have

λmax(A) ≤ max
i


Aii +

∑

j 6=i

|Aij |


 = max

i


Aii −

∑

j 6=i

Aij


 = max

i


2Aii −

∑

j

Aij


 ,

and thus

(25) λmax(A) ≤ 2 max
i
Aii.

If, further, the mesh is D−1-uniform, then from (16) and (23) we have

(26) λmax(A) ≤ 2 max
i
Aii ≤ 2C∇̂h

−2
D−1 max

i

∑

K∈ωi

|K|QD-1(K) = 2C∇̂h
−2
D−1 max

i
|ωi|.

3. Explicit time stepping and the stability condition. In this section we
study stability conditions for explicit one-step methods applied to the finite element
system (5) and obtain estimates for the maximum time step.
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1620 WEIZHANG HUANG, LENNARD KAMENSKI, AND JENS LANG

Suppose we are given a constant time step τ . Then an explicit one-step integration
scheme with s stages of order p computes approximations Un ≈ U(nτ) from

(27) Un = R(−τ M−1A)Un−1,

where the stability function R(z) is a polynomial in z and satisfies

(28) R(z) = 1 + z + · · ·+ zp

p! +
s∑

i=p+1
αiz

i = ez +O
(
zp+1) .

Classical explicit one-step methods have severe step size restrictions when solving stiff
problems such as (5) forNvi � 1. An interesting alternative is stabilized explicit Runge–
Kutta (RK) methods, which have an extended stability domain along the negative real
axis and therefore allow for larger time steps than classical explicit one-step methods.
Parameters αp+1, . . . , αs ∈ R in (28) are chosen such that |R(z)| ≤ 1 for z ∈ [−rs, 0]
and rs > 0 is as large as possible. Explicit methods have low memory demand and can
be considered as a good alternative to implicit methods when the solution of algebraic
equations arising from the latter is difficult and/or costly. Impressive examples and
comparison results with VODEPK (a stiff ODE solver with Krylov iterations) are
documented in [15]. Commonly used explicit methods include DUMKA, Runge–Kutta–
Chebyshev (RKC), and the orthogonal RKC (ROCK) methods. A common practical
choice is p = 2, but there exist also DUMKA and ROCK methods of higher order [8].

In the following we first study stability estimates for the approximate solutions Un

obtained from (27), assuming thatM is a full mass matrix. However, the decomposition
of a consistent mass matrix as a part of an explicit time integration method is in general
not affordable, since an implicit scheme with a much larger step may be performed at
the same cost. Hence, we mainly discuss consequences of lumping the mass matrix as
a routine procedure for (linear) finite elements. Although appropriate mass lumping
does not affect the overall accuracy, it is well known that lumping the consistent mass
induces dispersion errors that can affect the quality of the numerical solution. More
generally, we consider symmetric positive definite, surrogate matrices M̃ that satisfy

(29) c1M̃ ≤M ≤ c2M̃

and have nearly the same complexity as the diagonal lumped mass matrix Mlump.
Correction techniques for the dispersive effects of mass lumping and several efficient
choices for M̃ can be found in [6]. Note that, due to Lemma 2.3, we have c1 = 1/(d+2)
and c2 = (d+ 2)/2 for the special case M̃ = Mlump.

3.1. Stability of explicit one-step integration schemes. The investigation
of the stability is based on the following main observation: if B is a normal matrix
and R is a rational function, then

(30) ‖R(B)‖2 = max
i
|R(λi(B))|.

This fundamental relation is a direct consequence of the existence of a factorization
B = Q diag

(
λ1(B), . . . , λNvi

(B)
)
QT with a unitary matrix Q.

Using the fact that M− 1
2AM−

1
2 and A

1
2M−1A

1
2 are normal matrices, we can

prove the stability of the linear finite element approximation computed with an explicit
one-step method.
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Theorem 3. For a given explicit one-step method with the polynomial stability
function R, the linear finite element approximation uh

n satisfies
∥∥uh

n

∥∥
L2(Ω) ≤

∥∥uh
0
∥∥

L2(Ω) and |||uh
n|||H1(Ω) ≤ |||uh

0 |||H1(Ω)

if the time step τ is chosen such that

max
i

∣∣R
(
−τλi

(
M−1A

))∣∣ ≤ 1.

Proof. Since R is a polynomial function, we have

R(−τM−1A) = M−
1
2R(−τM− 1

2AM−
1
2 )M 1

2 = A−
1
2R(−τA 1

2M−1A
1
2 )A 1

2 .

From this, it is easy to see that (27) can be written as

M
1
2Un = R(−τM− 1

2AM−
1
2 )M 1

2Un−1,(31)
A

1
2Un = R(−τA 1

2M−1A
1
2 )A 1

2Un−1.(32)

Since M and A are symmetric and positive definite, M− 1
2AM−

1
2 and A 1

2M−1A
1
2 are

symmetric and therefore normal. From (30), our assumption on the time step, and
the fact that M−1A, M− 1

2AM−
1
2 , and A 1

2M−1A
1
2 are similar to each other, we get

∥∥∥R(−τM− 1
2AM−

1
2 )
∥∥∥

2
=
∥∥∥R(−τA 1

2M−1A
1
2 )
∥∥∥

2
= max

i

∣∣R(−τλi(M−1A))
∣∣ ≤ 1.

Thus, (31) and (32) imply

∥∥uh
n

∥∥
L2(Ω) =

∥∥∥M 1
2Un

∥∥∥
2
≤
∥∥∥M 1

2Un−1

∥∥∥
2

=
∥∥uh

n−1
∥∥

L2(Ω),

|||uh
n|||H1(Ω) =

∥∥∥A 1
2Un

∥∥∥
2
≤
∥∥∥A 1

2Un−1

∥∥∥
2

= |||uh
n−1|||H1(Ω).

Successive application of these inequalities yields the assertion.
We next consider the case where the linear finite element mass matrix M is

replaced by a symmetric positive definite, surrogate matrix M̃ of lower complexity.
That means that from now on we compute approximations Un ≈ U(nτ) from

(33) Un = R(−τ M̃−1A)Un−1.

Theorem 4. For a given explicit one-step method with the polynomial stability
function R and a symmetric positive definite, surrogate matrix M̃ that satisfies c1M̃ ≤
M ≤ c2M̃ for some positive constants c1 and c2, the linear finite element approximation
uh

n satisfies

∥∥uh
n

∥∥
L2(Ω) ≤

√
c2
c1

∥∥uh
0
∥∥

L2(Ω) and |||uh
n|||H1(Ω) ≤ |||uh

0 |||H1(Ω)

if the time step τ is chosen such that

max
i
|R(−τλi(M̃−1A))| ≤ 1 .
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Table 1
C∗ in Theorem 5.

General meshes Nonobtuse w.r.t. D−1

M̃ = M 2 (d + 1) 4
M̃ = Mlump d + 1 2

Proof. ReplacingM by M̃ in the proof of Theorem 3 does not change the arguments
and gives

|||uh
n|||H1(Ω) =

∥∥∥A 1
2Un

∥∥∥
2
≤
∥∥∥A 1

2Un−1

∥∥∥
2

= |||uh
n−1|||H1(Ω),∥∥∥M̃ 1

2Un

∥∥∥
2
≤
∥∥∥M̃ 1

2Un−1

∥∥∥
2
.

From the first inequality, stability in the energy norm follows. To derive stability in
the L2-norm, we make use of the assumption on M̃ :
∥∥uh

n

∥∥2
L2(Ω) = (Un)T

MUn ≤ c2 (Un)T
M̃Un = c2

∥∥∥M̃ 1
2Un

∥∥∥
2
≤ c2

∥∥∥M̃ 1
2Un−1

∥∥∥
2

≤ · · · ≤ c2
∥∥∥M̃ 1

2U0

∥∥∥
2

= c2 (U0)T
M̃U0 ≤

c2
c1

(U0)T
MU0 = c2

c1

∥∥uh
0
∥∥2

L2(Ω),

which gives the desired result.
In the special case M̃ = Mlump we have the following result.
Corollary 4.1. Under the assumptions of Theorem 4 and M̃ = Mlump, we have

∥∥uh
n

∥∥
L2(Ω) ≤

d+ 2√
2
∥∥uh

0
∥∥

L2(Ω) and |||uh
n|||H1(Ω) ≤ |||uh

0 |||H1(Ω).

3.2. Estimates on the largest eigenvalue of M̃−1A. The above results show
that the contractivity of any given explicit one-step method is guaranteed if all eigen-
values of −τM̃−1A are in the corresponding stability domain S = {z ∈ C : |R(z)| ≤ 1}.
As a consequence, the key to the stability analysis of a given scheme is the estimation
of the eigenvalues of M̃−1A. The following theorem provides such an estimate for
two choices of M̃ : M̃ = M and M̃ = Mlump. It turns out that in these cases the
largest eigenvalue of M̃−1A is equivalent to the largest ratio between the corresponding
diagonal entries of A and M̃ .

Theorem 5. The eigenvalues of M̃−1A with M̃ being either M or Mlump are real
and positive. Moreover, the largest eigenvalue is bounded by

(34) max
i

Aii

M̃ii

≤ λmax
(
M̃−1A

)
≤ C∗max

i

Aii

M̃ii

,

where C∗ is given in Table 1.

Proof. Since M̃ and A are symmetric and positive definite and M̃−1A is similar
to the symmetric matrix M̃− 1

2AM̃−
1
2 , the eigenvalues of M̃−1A are real and positive.

Using the canonical basis vectors ei gives

λmax
(
M̃−1A

)
= max

v 6=0

vTAv

vT M̃v
≥ max

i

eT
i Aei

eT
i M̃ei

= max
i

Aii

M̃ii

.
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Let us first have a look at the case M̃ = M . Lemmas 2.1 and 2.4 yield

(35) λmax
(
M−1A

)
= max

v 6=0

vTAv

vTMv
≤ max

v 6=0

(d+ 1)vTADv
1
2v

TMDv
= 2(d+ 1) max

i

Aii

Mii
.

For the special case of meshes with nonobtuse angles with respect to D−1, the
above bound can be sharpened by replacing the factor d + 1 in (35) with 2 (see
Remark 2). If M̃ = Mlump, then the factor 1/2 in the denominator of (35) can be
replaced by 1 since Mlump is already diagonal.

Example 6 (stabilized RK methods). The stability region of a stabilized RK
method of order p = 1 with s stages extends along the negative real axis of the complex
plane, including the interval

[
−2s2, 0

]
[8, p. 31f]. Thus, the method is stable if all

eigenvalues of −τM̃−1A are between −2s2 and 0. This leads to the stability condition

(36) τ ≤ 2s2

λmax
(
M̃−1A

) .

Using Theorem 5 and noticing that (maxi
Aii

M̃ii
)−1 = mini

M̃ii

Aii
, we obtain a bound for

the largest permissible time step τmax as

(37) 2s2

C∗
min

i

M̃ii

Aii
≤ τmax ≤ 2s2 min

i

M̃ii

Aii
.

Clearly, if

τ > 2s2 min
i

M̃ii

Aii
,

we have |R(−τλmax(M̃−1A))| > 1 and the scheme becomes unstable. In order to
guarantee stability, the step size has to be chosen such that

τ ≤ 2s2

C∗
min

i

M̃ii

Aii
.

Note that here M̃ = M or M̃ = Mlump.

In practice, a few steps of a nonlinear power method are often sufficient to estimate
the spectral radius automatically, especially if the eigenvalues are close to the negative
real axis. However, the power method can degenerate in many ways, so precaution has
to be taken and theoretical bounds can be helpful. Such bounds are also necessary for
gaining insight into the effects of mesh geometry on the stability of explicit integration
schemes and the maximum allowed step size. The estimate in Theorem 5 is easily
computable, but it does not explain how the mesh geometry affects the time step. To
reveal these effects, we provide several geometric formulations of the estimate in the
following. First, substituting (18) and (23) for M̃ii and Aii in Theorem 5 gives the
following corollary.

Corollary 6.1. The largest eigenvalue of M̃−1A is bounded by

λmax(M̃−1A) ≤ C∗C# max
i

∑

K∈ωi

|K|
|ωi|

∥∥∥(F ′K)−1DK(F ′K)−T
∥∥∥

2
(38)

= C∗C#h
−2
D−1 max

i

∑

K∈ωi

|K|
|ωi|

QD-1(K),(39)
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where C# = 1
2C∇̂(d+ 1)(d+ 2), C∇̂ and C∗ are as given in Lemma 2.5 and Table 1,

and the element quality QD-1(K) is as defined in (13) (with M being replaced by D−1).
The factor h−2

D−1 in (38) corresponds to h2 in the classic stability condition τ ∼ h2

for uniform meshes with the Laplace operator. Since

hD−1 = (|Ω|D−1,h/N)
1
d → (|Ω|D−1/N)

1
d

as the mesh is being refined, hD−1 can be considered independent of the mesh geometry,
and therefore it essentially depends only on N , D, and Ω.

The effect of the mesh geometry is reflected mainly through the patch-average of
‖(F ′K)−1DK(F ′K)−T ‖2 or, alternatively, the element quality measure QD-1(K). Recall
from (14) that QD-1(K) can be seen as a ratio of the average element size to the
diameter of the largest sphere inscribed in K, both measured in the metric D−1

K .
Hence, we can conclude that the largest possible time step depends on the number

of mesh elements and the correspondence of the geometry of the mesh elements to D−1.
In other words, it is not the mesh geometry itself but the mesh geometry in relation to
the diffusion matrix that matters for the stability of explicit schemes.

We now study the situation with an M-uniform mesh for a general metric tensor
M. Recall that such a mesh satisfies (17), which can be rewritten as

(F ′K)−T (F ′K)−1 = h−2
M MK ∀K ∈ Th.

Then,

QD-1(K) = h2
D−1

∥∥∥(F ′K)−1DK(F ′K)−T
∥∥∥

2
=
(
hD−1

hM

)2
‖MKDK‖2.

Inserting this into (38), we get

(40) λmax(M̃−1A) ≤ C∗C#h
−2
M max

i

∑

K∈ωi

|K|
|ωi|
· ‖MKDK‖2.

Once again, this shows that the largest eigenvalue of M̃−1A and, consequently, the
largest permissible time step depend on the number of elements and the matching
between the mesh (essentially determined by M) and the diffusion matrix. If mesh
adaptation and the major diffusion directions match, the largest permissible time step
depends mainly on the number of mesh elements. A mismatch between (anisotropic)
mesh adaptation and the diffusion directions can lead to a drastic reduction of the time
step (see Example 10 in section 4). In particular, it implies that one gets both accuracy
and stability with the same grid if the solution anisotropy is in correspondence with
the diffusion and one would have to trade off accuracy for stability if the demands
of accuracy and stability contradict each other (see also remarks by Shewchuk [23,
sect. 4.3]). To some extent, the demands of accuracy and stability can be combined
using a metric tensor in the form

MK = θKD−1
K ∀K ∈ Th,

where θK is a scalar function based on some (isotropic) error estimate; a similar
idea was used in [18] to combine mesh adaptation with satisfaction of the maximum
principle. This will not provide full mesh adaptation but will provide at least some
degree of it.
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Remark 7 (special cases). For a uniform mesh (M = I), we have

λmax(M̃−1A) ≤ C∗C#h
−2 max

i

∑

K∈ωi

|K|
|ωi|
· ‖DK‖2 ≈ C∗C#h

−2 max
i
‖Dωi

‖2,

where Dωi
denotes the average of D over a patch ωi.

In case of coefficient-adaptive (D−1-uniform) meshes (M = D−1), mesh adaptation
and diffusion directions match exactly, and (17) and (22) yield Aii = C∇̂|ωi|/h2

D−1 .
Thus, using (18) and Theorem 5 gives

λmax(M̃−1A) ∼ h−2
D−1 ∼ N

2
d .

Remark 8 (comparison to results available in the literature). For the full mass
matrix, Zhu and Du [27, Theorem 3.1] developed an estimate in terms of the element
geometry and the eigenvalues of the diffusion matrix which is valid for d ≥ 2 and Pk

finite elements. For the linear finite elements it becomes
maxK λmin(DK)ZK

d(1 + c1pmax(d+ 2)) ≤ λmax
(
M−1A

)
≤ (d+ 2) max

K
λmax(DK)ZK ,(41)

ZK = d+ 1
d2

∑

iK

|ViK
|2

|K|2
,

where |ViK
| is the volume of a (d− 1)-dimensional face opposing the iKth vertex of K,

pmax is the maximum number of elements in a patch, and c1 is the maximum ratio
between the volumes of neighboring elements. The ratio of the upper bound to the
lower one is approximately d(d+ 2)2c1pmaxκ(D), where κ(D) = λmax(DK)/λmin(DK).

Geometric bound (38) is similar to (41), but there is a significant difference. Since
ZK ∼ ‖(F ′K)−1(F ′K)−T ‖2, the interplay between the mesh geometry and the diffusion
matrix in (38) and (41) is mainly reflected by

∥∥∥(F ′K)−1DK(F ′K)−T
∥∥∥

2
and λmax(DK)

∥∥∥(F ′K)−1(F ′K)−T
∥∥∥

2
,

respectively. If either the mesh or D is isotropic, then the factors are comparable.
However, if both the mesh and D are anisotropic, then the former factor can be much
smaller than the latter. In the worst situation, the accuracy of (41) can deteriorate
proportionally to κ(D) (see Example 12 in section 4), whereas the bound (34) in
Theorem 5 in terms of matrix entries is sharp within a factor of at most 2(d + 1),
independently of the mesh and D.

In the case of mass lumping, Shewchuk [23, sect. 3] obtained geometric bounds in
2D and three dimensions (3D). The bounds can be generalized to any dimension as

(42) 1
d

max
K
SK ≤ λmax

(
M̃−1A

)
≤ pmax max

K
SK , SK = 1

d2

∑

iK

|K|
M̃iKiK

|ViK
|2D−1

|K|2D−1

,

where |ViK
|D−1 is the volume of a (d− 1)-dimensional face opposing the iKth vertex

of K with respect to D−1 and M̃iKiK
is the entry of the (global) lumped mass matrix

corresponding to the node iK . The bound takes the interplay between the mesh shape
and D fully into account and is tight within a factor of dpmax, independently of D, but
it still has a weak mesh dependence through pmax (typically, pmax ≥ 6 in 2D and can
be much larger in higher dimensions). Numerical examples in section 4 show that it is
comparable but less accurate than bound (34) obtained in this paper.

For the lumped case there is also an earlier result by Zhu and Du [26, Theorem 3.1],
but we omit it in this study since it is less accurate than Shewchuk’s bound (42).
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Fig. 2. Diffusion coefficients D in 1D (Example 9).

(a) uniform isotropic (b) uniform anisotropic (c) boundary layer

Fig. 3. Mesh examples in 2D (Example 10).

Note that (37) implies that 1 ≤ τmax/τh ≤ C∗ for any mesh and any diffusion matrix
D. Moreover, from (40),

(44) τmax
s2 ≥ 2h2

M
C∗C# maxi

1
|ωi|

∑
K∈ωi

|K| · ‖MKDK‖2
.

Example 9 (1D example [21, Sects. 6.1 and 6.2]). As a first example we consider
the heat diffusion ut = (Dux)x in Ω = (0, 1) with the diffusion coefficients

D(x) =
(

2− sin
(

2πx
ε

))−1
and D(x) =

(
2− sin

(
2π tan (1− ε)πx

2

))−1
,

where ε is a positive parameter (Figure 2). We choose ε = 2−4 for our tests.
Numerical results in Table 2 show that 1.00 ≤ τmax/τh ≤ 1.45 for all considered

meshes and cases, which is consistent with the theoretical prediction 1 ≤ τmax/τh ≤ 2
(with mass lumping) and 1 ≤ τmax/τh ≤ 4 (without mass lumping). Interestingly, for
this example, the estimate appears to be even asymptotically exact (τmax/τh → 1 as
N →∞) except for the case of D−1-uniform meshes with mass lumping.

Table 2 further shows that in case of mass lumping τmax is roughly three times
as large as τmax without mass lumping. The largest permissible time step τmax for
D−1-uniform meshes is approximately 1.4 to 1.8 times as large as for uniform meshes.

Fig. 2. Diffusion coefficients D in 1D (Example 9).

4. Numerical examples. To test the developed estimates, we continue Exam-
ple 6 (stabilized RK methods) and compare the exact value of the largest permissible
time step (36) with the lower bound (37),

τmax = 2s2

λmax(M−1A) and τh = 2s2

C∗
min

i

Mii

Aii
,

and compute the ratio τmax/τh to evaluate the accuracy of the estimate. Since τmax/τh

is independent of the number of stages s, we rescale the values of τmax and τh by s−2

to stay general; i.e., in the following we compare

(43) τmax
s2 = 2

λmax(M−1A) with τh

s2 = 2
C∗

min
i

Mii

Aii
.

Note that (37) implies that 1 ≤ τmax/τh ≤ C∗ for any mesh and any diffusion matrix
D. Moreover, from (40),

(44) τmax
s2 ≥ 2h2

M
C∗C# maxi

1
|ωi|

∑
K∈ωi

|K| · ‖MKDK‖2
.

Example 9 (one-dimensional (1D) example [21, sects. 6.1 and 6.2]). As a first
example we consider the heat diffusion ut = (Dux)x in Ω = (0, 1) with the diffusion
coefficients

D(x) =
(

2− sin
(

2πx
ε

))−1
and D(x) =

(
2− sin

(
2π tan (1− ε)πx

2

))−1
,

where ε is a positive parameter (Figure 2). We choose ε = 2−4 for our tests.
Numerical results in Table 2 show that 1.00 ≤ τmax/τh ≤ 1.45 for all considered

meshes and cases, which is consistent with the theoretical prediction 1 ≤ τmax/τh ≤ 2
(with mass lumping) and 1 ≤ τmax/τh ≤ 4 (without mass lumping). Interestingly, for
this example, the estimate appears to be even asymptotically exact (τmax/τh → 1 as
N →∞) except for the case of D−1-uniform meshes with mass lumping.

Table 2 further shows that in case of mass lumping τmax is roughly three times
as large as τmax without mass lumping. The largest permissible time step τmax for
D−1-uniform meshes is approximately 1.4 to 1.8 times as large as for uniform meshes.
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Table 2
Numerical results in 1D (Example 9).

(a) periodic D (Figure 2(a))

With mass lumping Without mass lumping

N τmax
s2

τh
s2

τmax
τh

τmax
s2

τh
s2

τmax
τh

uniform meshes

64 1.84×10−4 1.27×10−4 1.45 6.57×10−5 5.10×10−5 1.29
128 3.79×10−5 3.26×10−5 1.16 1.45×10−5 1.09×10−5 1.32
256 8.66×10−6 7.76×10−6 1.12 3.11×10−6 2.59×10−6 1.20
512 2.04×10−6 1.91×10−6 1.06 7.08×10−7 6.37×10−7 1.11

1 024 4.93×10−7 4.77×10−7 1.03 1.68×10−7 1.59×10−7 1.06
2 048 1.21×10−7 1.19×10−7 1.02 4.09×10−8 3.97×10−8 1.03

D−1-uniform meshes

64 2.30×10−4 1.86×10−4 1.23 7.67×10−5 7.54×10−5 1.02
128 5.86×10−5 4.86×10−5 1.21 1.96×10−5 1.94×10−5 1.01
256 1.47×10−5 1.22×10−5 1.21 4.91×10−6 4.90×10−6 1.00
512 3.69×10−6 3.06×10−6 1.21 1.23×10−6 1.23×10−6 1.00

1 024 9.22×10−7 7.67×10−7 1.20 3.07×10−7 3.07×10−7 1.00
2 048 2.31×10−7 1.92×10−7 1.20 7.68×10−8 7.68×10−8 1.00

(b) nonperiodic D (Figure 2(b))

With mass lumping Without mass lumping

N τmax
s2

τh
s2

τmax
τh

τmax
s2

τh
s2

τmax
τh

uniform meshes

64 1.25×10−4 1.19×10−4 1.05 4.31×10−5 3.96×10−5 1.09
128 3.09×10−5 3.01×10−5 1.03 1.05×10−5 1.00×10−5 1.04
256 7.67×10−6 7.57×10−6 1.01 2.58×10−6 2.52×10−6 1.02
512 1.91×10−6 1.90×10−6 1.01 6.41×10−7 6.33×10−7 1.01

1 024 4.78×10−7 4.76×10−7 1.00 1.60×10−7 1.59×10−7 1.01
2 048 1.19×10−7 1.19×10−7 1.00 3.98×10−8 3.97×10−8 1.00

D−1-uniform meshes

64 2.04×10−4 1.68×10−4 1.22 7.09×10−5 6.59×10−5 1.08
128 5.28×10−5 4.18×10−5 1.26 1.82×10−5 1.67×10−5 1.09
256 1.32×10−5 1.10×10−5 1.21 4.53×10−6 4.24×10−6 1.07
512 3.43×10−6 2.76×10−6 1.25 1.15×10−6 1.12×10−6 1.02

1 024 8.65×10−7 6.98×10−7 1.24 2.89×10−7 2.86×10−7 1.01
2 048 2.17×10−7 1.77×10−7 1.22 7.23×10−8 7.20×10−8 1.00

Example 10 (2D example, D = I). In this example we consider the most simple
case of D = I. Mesh examples are taken from [26, 27]; they are uniform isotropic,
uniform anisotropic, and strongly refined toward the boundary (Figure 3). Since these
meshes have no obtuse angles, we can use sharper bounds with C∗ = 2 (mass lumping)
or C∗ = 4 (no mass lumping), and therefore we expect that 1 ≤ τmax/τh ≤ 2 or
1 ≤ τmax/τh ≤ 4, respectively.

Table 3 shows that 1.14 ≤ τmax/τh ≤ 1.69 (mass lumping) and 1.18 ≤ τmax/τh ≤
2.33 (no mass lumping). In comparison, the same ratio if using (41) and (42) ranges
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Fig. 2. Diffusion coefficients D in 1D (Example 9).

(a) uniform isotropic (b) uniform anisotropic (c) boundary layer

Fig. 3. Mesh examples in 2D (Example 10).

Note that (37) implies that 1 ≤ τmax/τh ≤ C∗ for any mesh and any diffusion matrix
D. Moreover, from (40),

(44) τmax
s2 ≥ 2h2

M
C∗C# maxi

1
|ωi|

∑
K∈ωi

|K| · ‖MKDK‖2
.

Example 9 (1D example [21, Sects. 6.1 and 6.2]). As a first example we consider
the heat diffusion ut = (Dux)x in Ω = (0, 1) with the diffusion coefficients

D(x) =
(

2− sin
(

2πx
ε

))−1
and D(x) =

(
2− sin

(
2π tan (1− ε)πx

2

))−1
,

where ε is a positive parameter (Figure 2). We choose ε = 2−4 for our tests.
Numerical results in Table 2 show that 1.00 ≤ τmax/τh ≤ 1.45 for all considered

meshes and cases, which is consistent with the theoretical prediction 1 ≤ τmax/τh ≤ 2
(with mass lumping) and 1 ≤ τmax/τh ≤ 4 (without mass lumping). Interestingly, for
this example, the estimate appears to be even asymptotically exact (τmax/τh → 1 as
N →∞) except for the case of D−1-uniform meshes with mass lumping.

Table 2 further shows that in case of mass lumping τmax is roughly three times
as large as τmax without mass lumping. The largest permissible time step τmax for
D−1-uniform meshes is approximately 1.4 to 1.8 times as large as for uniform meshes.

Fig. 3. Mesh examples in 2D (Example 10).

from 1.78 to 3.501 and 4.00 to 6.77, respectively. In this example D = I, so that the
difference is mainly due to the fact that estimates in terms of mesh geometry are
generally less tight than those in terms of matrix entries since additional estimation
steps decrease the accuracy.

Notice the significant reduction of τmax when the mesh gets adapted in the
“wrong” way, i.e., away from D−1. For example, a 32 × 32 uniform mesh requires
τmax = 2.38×10−4, whereas the 4 × 256 mesh with the same number of elements
requires τmax = 6.36×10−6, a reduction by a factor of 37. A strongly anisotropic 4×16
mesh adapted toward the boundary with a much smaller number of elements leads to
the further reduction of the step size by a factor of 3 000. Thus, the matching between
the element geometry and the diffusion matrix has significant effects on the time step
size, and, depending on the anisotropy of the mesh and diffusion matrix, changes in
the mesh alignment can result in changes in the time step size by orders of magnitude.

Again, mass lumping allows approximately 1.9 to 3.2 times larger time steps.

Example 11 (2D groundwater flow with jumping coefficients [19]). As the next
example we consider groundwater flow through an aquifer. The problem is given
by the IBVP (1) with Ω = (0, 100) × (0, 100) and two impermeable subdomains
Ω1 = (0, 80)× (64, 68) and Ω2 = (20, 100)× (40, 44). Figure 4(a) shows the diffusion
matrix D and the boundary conditions. Although D is isotropic, it has a jump between
the subdomains, leading to the anisotropic behavior of the solution.

We compute the solution by h-refinement in the standard way and use Hessian
recovery based mesh adaptation to obtain adaptive meshes at particular time points
and compare the exact τmax with the lower bound τh. For our computation we used
KARDOS [2] to solve the PDE and BAMG [9] for mesh generation. Examples of adaptive
meshes are shown in Figure 4 for the time points t = 1.0×104 and t = 1.0×105. Note
that these meshes have oblique elements and angles close to 180◦: the maximum angles
in Figures 4(b) and 4(c) are 175◦ and 177◦, respectively.

Table 4a shows that the ratio τmax/τh is about 2.13 to 2.48 with mass lumping
and 3.25 to 3.87 without mass lumping, which is consistent with the theoretical upper
bounds d+ 1 = 3 and 2(d+ 1) = 6. In this example, mass lumping would allow 2.6
to 2.8 times larger time steps, which is similar to Example 10 (a factor of 1.9 to 3.2
there).

1In our tests, the estimate by Zhu and Du [27] seems to provide better results than that in the
numerical examples of the original paper.
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Table 3
Numerical results in 2D (Example 10).

Without mass lumping New estimate (43) Zhu & Du [27]

Mesh N τmax
s2

τh
s2

τmax
τh

τh
s2

τmax
τh

uniform isotropic (Figure 10(a))

8 × 8 128 1.31×10−3 9.77×10−4 1.34 6.51×10−4 2.01
16 × 16 512 3.09×10−4 2.44×10−4 1.27 1.63×10−4 1.90
32 × 32 2 048 7.60×10−5 6.10×10−5 1.24 4.07×10−5 1.87
64 × 64 8 192 1.89×10−5 1.53×10−5 1.24 1.02×10−5 1.86
128 × 128 32 768 4.72×10−6 3.81×10−6 1.24 2.54×10−6 1.86

uniform anisotropic (Figure 10(b))

32 × 32 2 048 7.60×10−5 6.10×10−5 1.24 4.07×10−5 1.87
16 × 64 2 048 3.40×10−5 2.87×10−5 1.18 1.91×10−5 1.78
8 × 128 2 048 9.00×10−6 7.60×10−6 1.18 5.07×10−6 1.78
4 × 256 2 048 2.38×10−6 1.91×10−6 1.25 1.27×10−6 1.87
2 × 512 2 048 6.36×10−7 4.77×10−7 1.33 3.18×10−7 2.00

boundary layer (Figure 10(c))

4 × 8 64 7.08×10−5 3.04×10−5 2.33 2.03×10−5 3.49
4 × 10 80 4.45×10−6 1.91×10−6 2.33 1.27×10−6 3.50
4 × 12 96 2.78×10−7 1.19×10−7 2.33 7.95×10−8 3.50
4 × 14 112 1.74×10−8 7.45×10−9 2.33 4.97×10−9 3.50
4 × 16 128 1.09×10−9 4.66×10−10 2.33 3.10×10−10 3.50

With mass lumping New estimate (43) Shewchuk [23]

Mesh N τmax
s2

τh
s2

τmax
τh

τh
s2

τmax
τh

uniform isotropic (Figure 10(a))

8 × 8 128 3.79×10−3 2.60×10−3 1.46 6.51×10−4 5.82
16 × 16 512 9.53×10−4 6.51×10−4 1.46 1.63×10−4 5.86
32 × 32 2 048 2.38×10−4 1.63×10−4 1.46 4.07×10−5 5.86
64 × 64 8 192 5.96×10−5 4.07×10−5 1.46 1.02×10−5 5.86
128 × 128 32 768 1.49×10−5 1.02×10−5 1.46 2.54×10−6 5.86

uniform anisotropic (Figure 10(b))

32 × 32 2 048 2.38×10−4 1.63×10−4 1.46 4.07×10−5 5.86
16 × 64 2 048 9.86×10−5 7.66×10−5 1.29 1.91×10−5 5.15
8 × 128 2 048 2.54×10−5 2.03×10−5 1.25 5.07×10−6 5.01
4 × 256 2 048 6.36×10−6 5.09×10−6 1.25 1.27×10−6 5.00
2 × 512 2 048 1.27×10−6 1.11×10−6 1.14 3.18×10−7 4.00

boundary layer (Figure 10(c))

4 × 8 64 1.37×10−4 8.11×10−5 1.69 2.03×10−5 6.77
4 × 10 80 8.61×10−6 5.09×10−6 1.69 1.27×10−6 6.77
4 × 12 96 5.38×10−7 3.18×10−7 1.69 7.95×10−8 6.77
4 × 14 112 3.36×10−8 1.99×10−8 1.69 4.97×10−9 6.77
4 × 16 128 2.10×10−9 1.24×10−9 1.69 3.10×10−10 6.77

In a practical computation, however, one would rather use a numerical approxi-
mation for λmax(M−1A). Typically, five steps of the Lanczos method with a random
starting vector approximate the largest eigenvalue within 10%. Another practical
alternative is the power method, for which it is reported [22, sect. 3.2] that, for the
case of eigenvalues being close to the negative real axis, usually only a few iterations
are required if the computed eigenvector from the previous step is used as a new
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D = 5.8×10−2I

D = 5.8×10−9I

D = 5.8×10−9I

u(t) = 1 − e−t/1000

u(t) = 0

∂
u
/
∂
n

=
0 ∂

u
/
∂
n

=
0

(a) Domain and the diffusion D (b) t = 1.0×104, N = 5 305 (c) t = 1.0×105, N = 20 334

Fig. 4. Domain, mesh examples and close-ups at [74, 82] × [62, 70] (the upper right corner at
the entrance of the tunnel) for the groundwater flow (Example 11).

Table 4
Numerical results for the groundwater flow (Example 11).

(a) computing τh with (43)

with mass lumping without mass lumping

time N τmax
s2

τh
s2

τmax
τh

τmax
s2

τh
s2

τmax
τh

1.0×102 3 071 1.48×100 5.97×10−1 2.48 5.77×10−1 1.49×10−1 3.87
5.0×103 2 799 4.74×100 2.23×100 2.13 1.81×100 5.57×10−1 3.25
1.0×104 5 305 1.80×100 8.01×10−1 2.25 6.89×10−1 2.00×10−1 3.44
1.0×105 20 334 2.05×10−1 9.11×10−2 2.25 7.45×10−2 2.28×10−2 3.27

(b) computing τh with five steps of the Lánczos method using a random starting vector

with mass lumping without mass lumping

time N τmax
s2

τh
s2

τmax
τh

τmax
s2

τh
s2

τmax
τh

1.0×102 3 071 1.48×100 1.48×100 1.00 5.77×10−1 5.64×10−1 1.02
5.0×103 2 799 4.74×100 4.44×100 1.07 1.81×100 1.77×100 1.02
1.0×104 5 305 1.80×100 1.69×100 1.07 6.89×10−1 6.46×10−1 1.07
1.0×105 20 334 2.05×10−1 1.98×10−1 1.03 7.45×10−2 7.05×10−2 1.06

Fig. 4. Domain, mesh examples, and close-ups at [74, 82] × [62, 70] (the upper right corner at
the entrance of the tunnel) for the groundwater flow (Example 11).

starting vector. To compare it with our theoretical estimate, we additionally computed
τh using five steps of the Lanczos method with a random starting vector (divided
by 1.1 as a security factor since Lanczos approximation is an approximation from
below). Table 4b shows that the corresponding ratio τmax/τh is about 1.00 to 1.07;
i.e., the computed time step approximation is within 7% from the optimal value. In
our computations, the accuracy of our theoretical estimate (43) corresponds to about
two to three steps of the Lanczos method.

We would like to also point out that the lower bound in (34) can be used as a
practical security check for a numerical approximation: if the computed numerical
approximation of λmax(M−1A) is smaller than this bound, the time step is guaranteed
to be out of the stability region of the time integration method.

Example 12 (2D anisotropic diffusion). This example shows the importance of
the interplay between the major diffusion directions and the mesh geometry.

Consider the IBVP (1) in Ω = (0, 1)2\
[ 4

9 ,
5
9
]2 with the homogeneous Dirichlet

boundary condition and

D =
[
cos θ − sin θ
sin θ cos θ

] [
1000 0

0 1

] [
cos θ sin θ
− sin θ cos θ

]
, θ = π sin x cos y.

First, we consider quasi-uniform meshes (Figure 5(a)), for which elements are
close to being uniform in shape and size, F ′K ≈ |K|

1
d I, and ‖(F ′K)−1DK(F ′K)−T ‖2 ≈

λmax(D)‖(F ′K)−1(F ′K)−T ‖2. Hence, using (39) and (41) provides comparable results,
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Table 4
Numerical results for the groundwater flow (Example 11).

(a) Computing τh with (43)

With mass lumping Without mass lumping

Time N τmax
s2

τh
s2

τmax
τh

τmax
s2

τh
s2

τmax
τh

1.0×102 3 071 1.48×100 5.97×10−1 2.48 5.77×10−1 1.49×10−1 3.87
5.0×103 2 799 4.74×100 2.23×100 2.13 1.81×100 5.57×10−1 3.25
1.0×104 5 305 1.80×100 8.01×10−1 2.25 6.89×10−1 2.00×10−1 3.44
1.0×105 20 334 2.05×10−1 9.11×10−2 2.25 7.45×10−2 2.28×10−2 3.27

(b) Computing τh with five steps of the Lanczos method using a random starting vector

With mass lumping Without mass lumping

Time N τmax
s2

τh
s2

τmax
τh

τmax
s2

τh
s2

τmax
τh

1.0×102 3 071 1.48×100 1.48×100 1.00 5.77×10−1 5.64×10−1 1.02
5.0×103 2 799 4.74×100 4.44×100 1.07 1.81×100 1.77×100 1.02
1.0×104 5 305 1.80×100 1.69×100 1.07 6.89×10−1 6.46×10−1 1.07
1.0×105 20 334 2.05×10−1 1.98×10−1 1.03 7.45×10−2 7.05×10−2 1.06STABILITY OF EXPLICIT METHODS WITH ADAPTIVE FE 21

(a) quasi-uniform (b) D−1-uniform

Fig. 5. Mesh examples for the anisotropic diffusion (Example 12).

Table 5
Numerical results for the anisotropic diffusion (Example 12).

(a) without mass lumping

new estimate (43) geometric (44) Zhu & Du [27]

N τmax
s2

τh
s2

τmax
τh

τh
s2

τmax
τh

τh
s2

τmax
τh

quasi-uniform meshes (Figure 5a)

2 050 1.06×10−7 3.23×10−8 3.28 1.67×10−8 6.35 2.34×10−8 4.53
8 206 2.67×10−8 8.59×10−9 3.10 4.31×10−9 6.19 5.90×10−9 4.52

32 742 6.18×10−9 2.03×10−9 3.05 1.15×10−9 5.36 1.18×10−9 5.26
132 468 1.34×10−9 4.49×10−10 2.98 2.25×10−10 5.95 2.71×10−10 4.93

D−1-uniform meshes (Figure 5b)

2 058 6.17×10−7 2.11×10−7 2.92 9.58×10−8 6.44 6.05×10−10 1 020
8 257 1.77×10−7 8.64×10−8 2.05 5.22×10−8 3.40 2.42×10−10 733

32 669 5.97×10−8 3.03×10−8 1.97 1.63×10−8 3.66 6.37×10−11 937
132 053 7.43×10−10 2.31×10−10 3.22 1.64×10−10 4.52 2.14×10−12 347

(b) with mass lumping

new estimate (43) geometric (44) Shewchuk [23]

N τmax
s2

τh
s2

τmax
τh

τh
s2

τmax
τh

τh
s2

τmax
τh

quasi-uniform meshes (Figure 5a)

2 050 2.98×10−7 1.29×10−7 2.31 6.68×10−8 4.46 5.07×10−8 5.87
8 206 6.86×10−8 3.42×10−8 2.01 1.66×10−8 4.13 1.51×10−8 4.54

32 742 1.76×10−8 8.12×10−9 2.16 4.35×10−9 4.04 3.31×10−9 5.31
132 468 4.06×10−9 1.77×10−9 2.30 8.99×10−10 4.51 6.74×10−10 6.02

D−1-uniform meshes (Figure 5b)

2 058 1.10×10−6 5.56×10−7 1.98 2.53×10−7 4.35 2.26×10−7 4.87
8 257 4.47×10−7 2.25×10−7 1.99 1.39×10−7 3.22 5.91×10−8 7.56

32 669 1.51×10−7 7.57×10−8 2.00 4.05×10−8 3.74 1.92×10−8 7.87
132 053 1.66×10−9 9.22×10−10 1.79 6.57×10−10 2.52 2.17×10−10 7.64

Fig. 5. Mesh examples for the anisotropic diffusion (Example 12).

which is confirmed by the numerical results in Table 5: for quasi-uniform grids, (39) and
(41) or (42) are accurate within a factor of 4.04 to 6.35 and 4.52 to 6.02, respectively.

For D−1-uniform (coefficient-adaptive) meshes (Figure 5(b)) the situation is quite
different, and, as mentioned in Remark 8, bound (39) should be more accurate than
that obtained when using (41). This is indeed confirmed by the numerical results:
bound (39) is accurate within a factor of 3.40 to 6.44, whereas (41) underestimates
the real value by a factor of 347 to 1 020 (recalling that κ(D) = 1 000). Note that
Shewchuk’s bound (42) provides accurate results in any case, although not quite as
accurate as (39). It is worth pointing out that the most accurate bound in all cases is
(43) in terms of the matrix entries.

This example also shows that D−1-uniform meshes allow larger time steps even if
their elements may have “bad quality” in the common sense. Hence, it is important to
consider the quality of the mesh in relation to the diffusion and not by itself.

D
ow

nl
oa

de
d 

11
/1

0/
17

 to
 1

29
.2

37
.4

6.
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1632 WEIZHANG HUANG, LENNARD KAMENSKI, AND JENS LANG

Table 5
Numerical results for the anisotropic diffusion (Example 12).

(a) Without mass lumping

New estimate (43) Geometric (44) Zhu & Du [27]

N τmax
s2

τh
s2

τmax
τh

τh
s2

τmax
τh

τh
s2

τmax
τh

quasi-uniform meshes (Figure 5(a))

2 050 1.06×10−7 3.23×10−8 3.28 1.67×10−8 6.35 2.34×10−8 4.53
8 206 2.67×10−8 8.59×10−9 3.10 4.31×10−9 6.19 5.90×10−9 4.52

32 742 6.18×10−9 2.03×10−9 3.05 1.15×10−9 5.36 1.18×10−9 5.26
132 468 1.34×10−9 4.49×10−10 2.98 2.25×10−10 5.95 2.71×10−10 4.93

D−1-uniform meshes (Figure 5(b))

2 058 6.17×10−7 2.11×10−7 2.92 9.58×10−8 6.44 6.05×10−10 1 020
8 257 1.77×10−7 8.64×10−8 2.05 5.22×10−8 3.40 2.42×10−10 733

32 669 5.97×10−8 3.03×10−8 1.97 1.63×10−8 3.66 6.37×10−11 937
132 053 7.43×10−10 2.31×10−10 3.22 1.64×10−10 4.52 2.14×10−12 347

(b) With mass lumping

New estimate (43) Geometric (44) Shewchuk [23]

N τmax
s2

τh
s2

τmax
τh

τh
s2

τmax
τh

τh
s2

τmax
τh

quasi-uniform meshes (Figure 5(a))

2 050 2.98×10−7 1.29×10−7 2.31 6.68×10−8 4.46 5.07×10−8 5.87
8 206 6.86×10−8 3.42×10−8 2.01 1.66×10−8 4.13 1.51×10−8 4.54

32 742 1.76×10−8 8.12×10−9 2.16 4.35×10−9 4.04 3.31×10−9 5.31
132 468 4.06×10−9 1.77×10−9 2.30 8.99×10−10 4.51 6.74×10−10 6.02

D−1-uniform meshes (Figure 5(b))

2 058 1.10×10−6 5.56×10−7 1.98 2.53×10−7 4.35 2.26×10−7 4.87
8 257 4.47×10−7 2.25×10−7 1.99 1.39×10−7 3.22 5.91×10−8 7.56

32 669 1.51×10−7 7.57×10−8 2.00 4.05×10−8 3.74 1.92×10−8 7.87
132 053 1.66×10−9 9.22×10−10 1.79 6.57×10−10 2.52 2.17×10−10 7.64

5. Conclusions. Theorem 5 gives an easily computable bound on the largest
eigenvalue of the system matrix M̃−1A in terms of the diagonal entries of M̃ and A
with M̃ being either M or Mlump. The bound is tight for any mesh and any diffusion
matrix D within a small constant which is given explicitly and depends only on the
dimension of the domain. This allows efficient and accurate estimation of the largest
permissible time step τmax.

Moreover, estimates (38) and (40) in terms of the mesh geometry reveal how the
mesh and the diffusion matrix affect the stability condition. Roughly speaking, τmax
depends only on the number of mesh elements and the matching between the element
geometry with the diffusion matrix. Thus, it is not the element geometry itself but the
element geometry in relation to the diffusion matrix that is important for the stability.
The element quality measure QD-1 provides a measure for the effect of a given element
on the stability condition. As seen in Example 10, strong anisotropic adaptation in the
“wrong” direction can cause a significant reduction of the time step size. Meanwhile,
the result suggests that improvements in the element quality can significantly increase
τmax.
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The achieved result can be extended for high order [13] or even p-adaptive finite
elements without major modifications. Essentially, one only needs to recalculate the
constants which depend on the choice of the basis functions.

Furthermore, numerical results suggest that, at least in 1D and 2D, mass lumping
can increase the time step size by a factor of 2 to 3. This topic deserves more detailed
investigations.
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