16 research outputs found

    Levosimendan Ameliorates Cardiopulmonary Function but Not Inflammatory Response in a Dual Model of Experimental ARDS

    No full text
    The calcium sensitiser levosimendan, which is used as an inodilator to treat decompensated heart failure, may also exhibit anti-inflammatory properties. We examined whether treatment with levosimendan improves cardiopulmonary function and is substantially beneficial to the inflammatory response in acute respiratory response syndrome (ARDS). Levosimendan was administered intravenously in a new experimental porcine model of ARDS. For comparison, we used milrinone, another well-known inotropic agent. Our results demonstrated that levosimendan intravenously improved hemodynamics and lung function in a porcine ARDS model. Significant beneficial alterations in the inflammatory response and lung injury were not detected

    Effect of gelatin-polysuccinat on cerebral oxygenation and microcirculation in a porcine haemorrhagic shock model

    No full text
    Abstract Background During early treatment of haemorrhagic shock maintenance of cerebral and end-organ oxygen supply by fluid resuscitation is mandatory. Gelatin-polysuccinat (GP) recently regained attention despite a still unclear risk profile and widely unknown effects on cerebral and peripheral microcirculation. This study investigates the effects of GP versus balanced electrolyte solution (BEL) with focus on cerebral regional oxygen saturation and peripheral microcirculation in a porcine haemorrhagic shock model. Methods After Animal Care Committee approval haemorrhagic shock was induced by arterial blood withdrawal in 27 anaesthetized pigs. Consequently, the animals received rapid fluid resuscitation by either GP or BEL to replace the removed amount of blood, or remained untreated (n = 3 × 9). Over two hours cerebral regional oxygen saturation by near-infrared spectroscopy and peripheral buccal microcirculation by combined white-light spectrometry and laser-Doppler flowmetry were recorded. Secondary parameters included extended haemodynamics, spirometry, haematological and blood gas parameters. Results Both fluid resuscitation regimes sufficiently stabilized the macro- and microcirculation in haemorrhagic shock with a more pronounced effect following GP infusion. GP administration led to a persisting, critical impairment of cerebral regional oxygen saturation through considerable haemodilution. Survival rates were 100% in both fluid resuscitation groups, but only 33% in the untreated control. Conclusion Equal amounts of GP and BEL sufficiently stabilize systemic circulation and microcirculatory perfusion. Forced fluid resuscitation by GP should be applied with caution to prevent haemodilution-induced impairment of cerebral oxygen delivery

    Clinical dosage of lidocaine does not impact the biomedical outcome of sepsis-induced acute respiratory distress syndrome in a porcine model

    No full text
    Background Sepsis is a common disease in intensive care units worldwide, which is associated with high morbidity and mortality. This process is often associated with multiple organ failure including acute lung injury. Although massive research efforts have been made for decades, there is no specific therapy for sepsis to date. Early and best treatment is crucial. Lidocaine is a common local anesthetic and used worldwide. It blocks the fast voltage-gated sodium (Na+) channels in the neuronal cell membrane responsible for signal propagation. Recent studies show that lidocaine administered intravenously improves pulmonary function and protects pulmonary tissue in pigs under hemorrhagic shock, sepsis and under pulmonary surgery. The aim of this study is to show that lidocaine inhalative induces equivalent effects as lidocaine intravenously in pigs in a lipopolysaccharide (LPS)-induced sepsis with acute lung injury. Methods After approval of the local State and Institutional Animal Care Committee, to induce the septic inflammatory response a continuous infusion of lipopolysaccharide (LPS) was administered to the pigs in deep anesthesia. Following induction and stabilisation of sepsis, the study medication was randomly assigned to one of three groups: (1) lidocaine intravenously, (2) lidocaine per inhalation and (3) sham group. All animals were monitored for 8 h using advanced and extended cardiorespiratory monitoring. Postmortem assessment included pulmonary mRNA expression of mediators of early inflammatory response (IL-6 & TNF-alpha), wet-to-dry ratio and lung histology. Results Acute respiratory distress syndrome (ARDS) was successfully induced after sepsis-induction with LPS in all three groups measured by a significant decrease in the PaO2/FiO2 ratio. Further, septic hemodynamic alterations were seen in all three groups. Leucocytes and platelets dropped statistically over time due to septic alterations in all groups. The wet-to-dry ratio and the lung histology showed no differences between the groups. Additionally, the pulmonary mRNA expression of the inflammatory mediators IL-6 and TNF-alpha showed no significant changes between the groups. The proposed anti-inflammatory and lung protective effects of lidocaine in sepsis-induced acute lung injury could not be proven in this study

    Endexpiratory lung volume measurement correlates with the ventilation/perfusion mismatch in lung injured pigs

    No full text
    Abstract Background In acute respiratory respiratory distress syndrome (ARDS) a sustained mismatch of alveolar ventilation and perfusion (VA/Q) impairs the pulmonary gas exchange. Measurement of endexpiratory lung volume (EELV) by multiple breath-nitrogen washout/washin is a non-invasive, bedside technology to assess pulmonary function in mechanically ventilated patients. The present study examines the association between EELV changes and VA/Q distribution and the possibility to predict VA/Q normalization by means of EELV in a porcine model. Methods After approval of the state and institutional animal care committee 12 anesthetized pigs were randomized to ARDS either by bronchoalveolar lavage (n = 6) or oleic acid injection (n = 6). EELV, VA/Q ratios by multiple inert gas elimination and ventilation distribution by electrical impedance tomography were assessed at healthy state and at five different positive endexpiratory pressure (PEEP) steps in ARDS (0, 20, 15, 10, 5 cmH2O; each maintained for 30 min). Results VA/Q, EELV and tidal volume distribution all displayed the PEEP-induced recruitment in ARDS. We found a close correlation between VA/Q < 0.1 (representing shunt and low VA/Q units) and changes in EELV (spearman correlation coefficient −0.79). Logistic regression reveals the potential to predict VA/Q normalization (VA/Q < 0.1 less than 5%) from changes in EELV with an area under the curve of 0.89 with a 95%-CI of 0.81–0.96 in the receiver operating characteristic. Different lung injury models and recruitment characteristics did not influence these findings. Conclusion In a porcine ARDS model EELV measurement depicts PEEP-induced lung recruitment and is strongly associated with normalization of the VA/Q distribution in a model-independent fashion. Determination of EELV could be an intriguing addition in the context of lung protection strategies

    Lung injury does not aggravate mechanical ventilation-induced early cerebral inflammation or apoptosis in an animal model.

    Get PDF
    INTRODUCTION:The acute respiratory distress syndrome is not only associated with a high mortality, but also goes along with cognitive impairment in survivors. The cause for this cognitive impairment is still not clear. One possible mechanism could be cerebral inflammation as result of a "lung-brain-crosstalk". Even mechanical ventilation itself can induce cerebral inflammation. We hypothesized, that an acute lung injury aggravates the cerebral inflammation induced by mechanical ventilation itself and leads to neuronal damage. METHODS:After approval of the institutional and state animal care committee 20 pigs were randomized to one of three groups: lung injury by central venous injection of oleic acid (n = 8), lung injury by bronchoalveolar lavage in combination with one hour of injurious ventilation (n = 8) or control (n = 6). Brain tissue of four native animals from a different study served as native group. For six hours all animals were ventilated with a tidal volume of 7 ml kg-1 and a scheme for positive end-expiratory pressure and inspired oxygen fraction, which was adapted from the ARDS network tables. Afterwards the animals were killed and the brains were harvested for histological (number of neurons and microglia) and molecular biologic (TNFalpha, IL-1beta, and IL-6) examinations. RESULTS:There was no difference in the number of neurons or microglia cells between the groups. TNFalpha was significantly higher in all groups compared to native (p < 0.05), IL-6 was only increased in the lavage group compared to native (p < 0.05), IL-1beta showed no difference between the groups. DISCUSSION:With our data we can confirm earlier results, that mechanical ventilation itself seems to trigger cerebral inflammation. This is not aggravated by acute lung injury, at least not within the first 6 hours after onset. Nevertheless, it seems too early to dismiss the idea of lung-injury induced cerebral inflammation, as 6 hours might be just not enough time to see any profound effect

    Influence of rosuvastatin treatment on cerebral inflammation and nitro-oxidative stress in experimental lung injury in pigs

    No full text
    Background!#!Many patients with acute respiratory distress syndrome (ARDS) suffer from cognitive impairment after hospital discharge. Different mechanisms have been implicated as potential causes for this impairment, inter alia cerebral inflammation. A class of drugs with antioxidant and anti-inflammatory properties are β-HMG-CoA-reductase inhibitors ('statins'). We hypothesized that treatment with rosuvastatin attenuates cerebral cytokine mRNA expression and nitro-oxidative stress in an animal model of acute lung injury.!##!Methods!#!After approval of the institutional and state animal care committee, we performed this prospective randomized controlled animal study in accordance with the international guidelines for the care and use of laboratory animals. Thirty-two healthy male pigs were randomized to one of four groups: lung injury by central venous injection of oleic acid (n = 8), statin treatment before and directly after lung injury (n = 8), statin treatment after lung injury (n = 8), or ventilation-only controls (n = 8). About 18 h after lung injury and standardized treatment, the animals were euthanised, and the brains and lungs were collected for further examinations. We determined histologic lung injury and cerebral and pulmonal cytokine and 3-nitrotyrosine production.!##!Results!#!We found a significant increase in hippocampal IL-6 mRNA after lung injury (p &amp;lt; 0.05). Treatment with rosuvastatin before and after induction of lung injury led to a significant reduction of hippocampal IL-6 mRNA (p &amp;lt; 0.05). Cerebral 3-nitrotyrosine was significantly higher in lung-injured animals compared with all other groups (p &amp;lt; 0.05 vs. animals treated with rosuvastatin after lung injury induction; p &amp;lt; 0.001 vs. all other groups). 3-Nitrotyrosine was also increased in the lungs of the lung-injured pigs compared to all other groups (p &amp;lt; 0.05 each).!##!Conclusions!#!Our findings highlight cerebral cytokine production and nitro-oxidative stress within the first day after induction of lung injury. The treatment with rosuvastatin reduced IL-6 mRNA and 3-nitrotyrosine concentration in the brains of the animals. In earlier trials, statin treatment did not reduce mortality in ARDS patients but seemed to improve quality of life in ARDS survivors. Whether this is attributable to better cognitive function because of reduced nitro-oxidative stress and inflammation remains to be elucidated

    Inhalation therapy with the synthetic TIP-like peptide AP318 attenuates pulmonary inflammation in a porcine sepsis model

    No full text
    BACKGROUND: The lectin-like domain of TNF-alpha can be mimicked by synthetic TIP peptides and represents an innovative pharmacologic option to treat edematous respiratory failure. TIP inhalation was shown to reduce pulmonary edema and improve gas exchange. In addition to its edema resolution effect, TIP peptides may exert some anti-inflammatory properties. The present study therefore investigates the influence of the inhaled TIP peptide AP318 on intrapulmonary inflammatory response in a porcine model of systemic sepsis. METHODS: In a randomized-blinded setting lung injury was induced in 18 pigs by lipopolysaccharide-infusion and a second hit with a short period of ventilator-induced lung stress, followed by a six-hour observation period. The animals received either two inhalations with the peptide (AP318, 2x1 mg kg(-1)) or vehicle. Post-mortem pulmonary expression of inflammatory and mechanotransduction markers were determined by real-time polymerase chain reaction (IL-1beta, IL-6, TNF-alpha, COX-2, iNOS, amphiregulin, and tenascin-c). Furthermore, regional histopathological lung injury, edema formation and systemic inflammation were quantified. RESULTS: Despite similar systemic response to lipopolysaccharide infusion in both groups, pulmonary inflammation (IL-6, TNF-alpha, COX-2, tenascin-c) was significantly mitigated by AP318. Furthermore, a Western blot analysis shows a significantly lower of COX-2 protein level. The present sepsis model caused minor lung edema formation and moderate gas exchange impairment. Six hours after onset pathologic scoring showed no improvement, while gas exchange parameters and pulmonary edema formation were similar in the two groups. CONCLUSION: In summary, AP318 significantly attenuated intrapulmonary inflammatory response even without the presence or resolution of severe pulmonary edema in a porcine model of systemic sepsis-associated lung injury. These findings suggest an anti-inflammatory mechanism of the lectin-like domain beyond mere edema reabsorption in endotoxemic lung injury in vivo
    corecore