11,376 research outputs found

    Lyapunov-Schmidt Reduction for Unfolding Heteroclinic Networks of Equilibria and Periodic Orbits with Tangencies

    Get PDF
    This article concerns arbitrary finite heteroclinic networks in any phase space dimension whose vertices can be a random mixture of equilibria and periodic orbits. In addition, tangencies in the intersection of un/stable manifolds are allowed. The main result is a reduction to algebraic equations of the problem to find all solutions that are close to the heteroclinic network for all time, and their parameter values. A leading order expansion is given in terms of the time spent near vertices and, if applicable, the location on the non-trivial tangent directions. The only difference between a periodic orbit and an equilibrium is that the time parameter is discrete for a periodic orbit. The essential assumptions are hyperbolicity of the vertices and transversality of parameters. Using the result, conjugacy to shift dynamics for a generic homoclinic orbit to a periodic orbit is proven. Finally, equilibrium-to-periodic orbit heteroclinic cycles of various types are considered

    Canonical Interacting Quantum Fields on Two-Dimensional De Sitter Space

    Full text link
    We present the P(φ)2{\mathscr P}(\varphi)_2 model on de Sitter space in the canonical formulation. We discuss the role of the Noether theorem and we provide explicit expressions for the energy-stress tensor of the interacting model.Comment: minor correction

    Bayesian inference from photometric redshift surveys

    Full text link
    We show how to enhance the redshift accuracy of surveys consisting of tracers with highly uncertain positions along the line of sight. Photometric surveys with redshift uncertainty delta_z ~ 0.03 can yield final redshift uncertainties of delta_z_f ~ 0.003 in high density regions. This increased redshift precision is achieved by imposing an isotropy and 2-point correlation prior in a Bayesian analysis and is completely independent of the process that estimates the photometric redshift. As a byproduct, the method also infers the three dimensional density field, essentially super-resolving high density regions in redshift space. Our method fully takes into account the survey mask and selection function. It uses a simplified Poissonian picture of galaxy formation, relating preferred locations of galaxies to regions of higher density in the matter field. The method quantifies the remaining uncertainties in the three dimensional density field and the true radial locations of galaxies by generating samples that are constrained by the survey data. The exploration of this high dimensional, non-Gaussian joint posterior is made feasible using multiple-block Metropolis-Hastings sampling. We demonstrate the performance of our implementation on a simulation containing 2.0 x 10^7 galaxies. These results bear out the promise of Bayesian analysis for upcoming photometric large scale structure surveys with tens of millions of galaxies.Comment: 17 pages, 12 figure

    Methods for Bayesian power spectrum inference with galaxy surveys

    Full text link
    We derive and implement a full Bayesian large scale structure inference method aiming at precision recovery of the cosmological power spectrum from galaxy redshift surveys. Our approach improves over previous Bayesian methods by performing a joint inference of the three dimensional density field, the cosmological power spectrum, luminosity dependent galaxy biases and corresponding normalizations. We account for all joint and correlated uncertainties between all inferred quantities. Classes of galaxies with different biases are treated as separate sub samples. The method therefore also allows the combined analysis of more than one galaxy survey. In particular, it solves the problem of inferring the power spectrum from galaxy surveys with non-trivial survey geometries by exploring the joint posterior distribution with efficient implementations of multiple block Markov chain and Hybrid Monte Carlo methods. Our Markov sampler achieves high statistical efficiency in low signal to noise regimes by using a deterministic reversible jump algorithm. We test our method on an artificial mock galaxy survey, emulating characteristic features of the Sloan Digital Sky Survey data release 7, such as its survey geometry and luminosity dependent biases. These tests demonstrate the numerical feasibility of our large scale Bayesian inference frame work when the parameter space has millions of dimensions. The method reveals and correctly treats the anti-correlation between bias amplitudes and power spectrum, which are not taken into account in current approaches to power spectrum estimation, a 20 percent effect across large ranges in k-space. In addition, the method results in constrained realizations of density fields obtained without assuming the power spectrum or bias parameters in advance

    Attachment dynamics in a virtual world

    Get PDF

    Patterns formation in axially symmetric Landau-Lifshitz-Gilbert-Slonczewski equations

    Full text link
    The Landau-Lifshitz-Gilbert-Slonczewski equation describes magnetization dynamics in the presence of an applied field and a spin polarized current. In the case of axial symmetry and with focus on one space dimension, we investigate the emergence of space-time patterns in the form of wavetrains and coherent structures, whose local wavenumber varies in space. A major part of this study concerns existence and stability of wavetrains and of front- and domain wall-type coherent structures whose profiles asymptote to wavetrains or the constant up-/down-magnetizations. For certain polarization the Slonczewski term can be removed which allows for a more complete charaterization, including soliton-type solutions. Decisive for the solution structure is the polarization parameter as well as size of anisotropy compared with the difference of field intensity and current intensity normalized by the damping

    Virtual social environments as a tool for psychological assessment

    Get PDF
    • 

    corecore