36 research outputs found

    Challenges and Opportunities for Immunotherapeutic Intervention against Myeloid Immunosuppression in Glioblastoma

    Get PDF
    Glioblastoma multiforme (GBM), the most common and deadly brain cancer, exemplifies the paradigm that cancers grow with help from an immunosuppressive tumor microenvironment (TME). In general, TME includes a large contribution from various myeloid lineage-derived cell types, including (in the brain) altered pathogenic microglia as well as monocyte-macrophages (Macs), myeloid-derived suppressor cells (MDSC) and dendritic cell (DC) populations. Each can have protective roles, but has, by definition, been coopted by the tumor in patients with progressive disease. However, evidence demonstrates that myeloid immunosuppressive activities can be reversed in different ways, leading to enthusiasm for this therapeutic approach, both alone and in combination with potentially synergistic immunotherapeutic and other strategies. Here, we review the current understanding of myeloid cell immunosuppression of anti-tumor responses as well as potential targets, challenges, and developing means to reverse immunosuppression with various therapeutics and their status. Targets include myeloid cell colony stimulating factors (CSFs), insulin-like growth factor 1 (IGF1), several cytokines and chemokines, as well as CD40 activation and COX2 inhibition. Approaches in clinical development include antibodies, antisense RNA-based drugs, cell-based combinations, polarizing cytokines, and utilizing Macs as a platform for Chimeric Antigen Receptors (CAR)-based tumor targeting, like with CAR-T cells. To date, promising clinical results have been reported with several of these approaches

    A Biologic-Device Combination Product Delivering Tumor-Derived Antigens Elicits Immunogenic Cell Death-Associated Immune Responses Against Glioblastoma

    Get PDF
    Background IGV-001 is a personalized, autologous cancer cell-based immunotherapy conceived to deliver a tumor-derived antigenic payload in the context of immunostimulatory signals to patients with glioblastoma (GBM). IGV-001 consists of patient-derived GBM cells treated with an antisense oligodeoxynucleotide against insulin-like growth factor 1 receptor (IGF1R) and placed in proprietary biodiffusion chambers (BDCs). The BDCs are then exposed to 5–6 Gy radiation and implanted at abdominal sites for ~48 hours. IGV-001 has previously been shown to be generally safe with promising clinical activity in newly diagnosed GBM patients. Methods Mouse (m) or human (h) variants of IGV-001 were prepared using GL261 mouse GBM cells or human GBM cells, respectively. BDCs containing vehicle or mIGV-001 were implanted in the flanks of C57BL/6 albino female mice in preventative and therapeutic experiments, optionally in combination with a programmed cell death 1 (PD-1) blocker. Bioactivity of the general approach was also measured against hepatocellular carcinoma Hepa 1–6 cells. Mice were followed for the growth of subsequently implanted or pre-existing tumors and survival. Draining lymph nodes from mice receiving mIGV-001 were immunophenotyped. mIGV-001 and hIGV-001 were analyzed for extracellular ATP and high mobility group box 1 (HMGB1) as indicators of immunogenic cell death (ICD), along with flow cytometric analysis of viability, surface calreticulin, and reactive oxygen species. Stress and cell death-related pathways were analyzed by immunoblotting. Results IGV-001 causes oxidative and endoplasmic reticulum stress in GL261 cells, resulting in a cytotoxic response that enables the release of antigenic material and immunostimulatory, ICD-associated molecules including ATP and HMGB1 from BDCs. Immunophenotyping confirmed that IGV-001 increases the percentage of dendritic cells, as well as effector, and effector memory T cells in BDC-draining lymph nodes. Consistent with these observations, preventative IGV-001 limited tumor progression and extended overall survival in mice intracranially challenged with GL261 cells, a benefit that was associated with an increase in tumor-specific T cells with effector features. Similar findings were obtained in the Hepa 1–6 model. Moreover, therapeutically administered IGV-001 combined with PD-1 delayed progression in GBM-bearing mice. Conclusions These results support treatment with IGV-001 to induce clinically relevant ICD-driven anticancer immune responses in patients with GBM

    Abstracts of presentations on selected topics at the XIVth international plant protection congress (IPPC) July 25-30, 1999

    Get PDF

    Challenges and Opportunities for Immunotherapeutic Intervention against Myeloid Immunosuppression in Glioblastoma

    No full text
    Glioblastoma multiforme (GBM), the most common and deadly brain cancer, exemplifies the paradigm that cancers grow with help from an immunosuppressive tumor microenvironment (TME). In general, TME includes a large contribution from various myeloid lineage-derived cell types, including (in the brain) altered pathogenic microglia as well as monocyte-macrophages (Macs), myeloid-derived suppressor cells (MDSC) and dendritic cell (DC) populations. Each can have protective roles, but has, by definition, been coopted by the tumor in patients with progressive disease. However, evidence demonstrates that myeloid immunosuppressive activities can be reversed in different ways, leading to enthusiasm for this therapeutic approach, both alone and in combination with potentially synergistic immunotherapeutic and other strategies. Here, we review the current understanding of myeloid cell immunosuppression of anti-tumor responses as well as potential targets, challenges, and developing means to reverse immunosuppression with various therapeutics and their status. Targets include myeloid cell colony stimulating factors (CSFs), insulin-like growth factor 1 (IGF1), several cytokines and chemokines, as well as CD40 activation and COX2 inhibition. Approaches in clinical development include antibodies, antisense RNA-based drugs, cell-based combinations, polarizing cytokines, and utilizing Macs as a platform for Chimeric Antigen Receptors (CAR)-based tumor targeting, like with CAR-T cells. To date, promising clinical results have been reported with several of these approaches

    GRP78 modulates cell adhesion markers in prostate Cancer and multiple myeloma cell lines

    No full text
    Abstract Background Glucose regulated protein 78 (GRP78) is a resident chaperone of the endoplasmic reticulum and a master regulator of the unfolded protein response under physiological and pathological cell stress conditions. GRP78 is overexpressed in many cancers, regulating a variety of signaling pathways associated with tumor initiation, proliferation, adhesion and invasion which contributes to metastatic spread. GRP78 can also regulate cell survival and apoptotic pathways to alter responsiveness to anticancer drugs. Tumors that reside in or metastasize to the bone and bone marrow (BM) space can develop pro-survival signals through their direct adhesive interactions with stromal elements of this niche thereby resisting the cytotoxic effects of drug treatment. In this study, we report a direct correlation between GRP78 and the adhesion molecule N-cadherin (N-cad), known to play a critical role in the adhesive interactions of multiple myeloma and metastatic prostate cancer with the bone microenvironment. Methods N-cad expression levels (transcription and protein) were evaluated upon siRNA mediated silencing of GRP78 in the MM.1S multiple myeloma and the PC3 metastatic prostate cancer cell lines. Furthermore, we evaluated the effects of GRP78 knockdown (KD) on epithelial-mesenchymal (EMT) transition markers, morphological changes and adhesion of PC3 cells. Results GRP78 KD led to concomitant downregulation of N-cad in both tumors types. In PC3 cells, GRP78 KD significantly decreased E-cadherin (E-cad) expression likely associated with the induction in TGF-β1 expression. Furthermore, GRP78 KD also triggered drastic changes in PC3 cells morphology and decreased their adhesion to osteoblasts (OSB) dependent, in part, to the reduced N-cad expression. Conclusion This work implicates GRP78 as a modulator of cell adhesion markers in MM and PCa. Our results may have clinical implications underscoring GRP78 as a potential therapeutic target to reduce the adhesive nature of metastatic tumors to the bone niche

    Enhanced Cancer Theranostics with Self-Assembled, Multilabeled siRNAs

    No full text
    The integration of therapy and diagnostics, termed “theranostics”, has recently gained widespread utility in the development of new and improved therapeutics that effectively diagnose and treat diseases, such as cancer. In this study, the covalent attachment of multiple fluorescent labels (i.e., fluorescein isothiocyanate (FITC)) to a wide range of siRNAs, including those adopting linear, V- and Y-shape nanostructures, was successfully accomplished by solid-phase bioconjugation for monitoring cell uptake, co-localization, and biological activity in cell culture. The FITC-labeled higher-order V- and Y-shape siRNAs maintained the requisite hybrid stabilities and A-type helical structures for invoking RNAi activity. The FITC–siRNA hybrids with sense-strand modifiers enabled efficient mRNA knockdown (∼50–90%), which also translated to increased cell death (∼20–95%) in a bone metastatic prostate cancer cell line, over a 72 h incubation period. Significantly, the Y-shaped siRNA containing three FITC probes enhanced fluorescent signaling relative to the siRNA constructs containing single and double fluorophores while retaining potent knockdown and cell death effects post-transfection. Taken together, this data highlights the theranostic utility of the multilabeled FITC–siRNA constructs for potential cancer gene therapy applications

    A biologic-device combination product delivering tumor-derived antigens elicits immunogenic cell death-associated immune responses against glioblastoma

    No full text
    Background IGV-001 is a personalized, autologous cancer cell-based immunotherapy conceived to deliver a tumor-derived antigenic payload in the context of immunostimulatory signals to patients with glioblastoma (GBM). IGV-001 consists of patient-derived GBM cells treated with an antisense oligodeoxynucleotide against insulin-like growth factor 1 receptor (IGF1R) and placed in proprietary biodiffusion chambers (BDCs). The BDCs are then exposed to 5–6 Gy radiation and implanted at abdominal sites for ~48 hours. IGV-001 has previously been shown to be generally safe with promising clinical activity in newly diagnosed GBM patients.Methods Mouse (m) or human (h) variants of IGV-001 were prepared using GL261 mouse GBM cells or human GBM cells, respectively. BDCs containing vehicle or mIGV-001 were implanted in the flanks of C57BL/6 albino female mice in preventative and therapeutic experiments, optionally in combination with a programmed cell death 1 (PD-1) blocker. Bioactivity of the general approach was also measured against hepatocellular carcinoma Hepa 1–6 cells. Mice were followed for the growth of subsequently implanted or pre-existing tumors and survival. Draining lymph nodes from mice receiving mIGV-001 were immunophenotyped. mIGV-001 and hIGV-001 were analyzed for extracellular ATP and high mobility group box 1 (HMGB1) as indicators of immunogenic cell death (ICD), along with flow cytometric analysis of viability, surface calreticulin, and reactive oxygen species. Stress and cell death-related pathways were analyzed by immunoblotting.Results IGV-001 causes oxidative and endoplasmic reticulum stress in GL261 cells, resulting in a cytotoxic response that enables the release of antigenic material and immunostimulatory, ICD-associated molecules including ATP and HMGB1 from BDCs. Immunophenotyping confirmed that IGV-001 increases the percentage of dendritic cells, as well as effector, and effector memory T cells in BDC-draining lymph nodes. Consistent with these observations, preventative IGV-001 limited tumor progression and extended overall survival in mice intracranially challenged with GL261 cells, a benefit that was associated with an increase in tumor-specific T cells with effector features. Similar findings were obtained in the Hepa 1–6 model. Moreover, therapeutically administered IGV-001 combined with PD-1 delayed progression in GBM-bearing mice.Conclusions These results support treatment with IGV-001 to induce clinically relevant ICD-driven anticancer immune responses in patients with GBM
    corecore