1,839 research outputs found

    Neutron Spectroscopic Factors from Transfer Reactions

    Get PDF

    Neutron spectroscopic factors of Ni isotopes from transfer reactions

    Full text link
    177 neutron spectroscopic factors for nickel isotopes have been extracted by performing a systematic analysis of the angular distributions measured from (d,p) transfer reactions. A subset of the extracted spectroscopic factors are compared to predictions of large-basis shell models in the full pf model space using the GXPF1A effective interaction, and the (f5/2, p3/2, p1/2, g9/2) model space using the JJ4PNA interaction. For ground states, the predicted spectroscopic factors using the GXPF1A effective interaction in the full pf model space agree very well with the experimental values, while predictions based on several other effective interactions and model spaces are about 30% higher than the experimental values. For low-energy excited states (<3.5 MeV), the agreement between the extracted spectroscopic factors and shell model calculations is not better than a factor of two.Comment: 18 pages, 4 figures, 2 tables. accepted for publication in PR

    Investigations of three, four, and five-particle exit channels of levels in light nuclei created using a 9C beam

    Get PDF
    The interactions of a E/A=70-MeV 9C beam with a Be target was used to populate levels in Be, B, and C isotopes which undergo decay into many-particle exit channels. The decay products were detected in the HiRA array and the level energies were identified from their invariant mass. Correlations between the decay products were examined to deduce the nature of the decays, specifically to what extent all the fragments were created in one prompt step or whether the disintegration proceeded in a sequential fashion through long-lived intermediate states. In the latter case, information on the spin of the level was also obtained. Of particular interest is the 5-body decay of the 8C ground state which was found to disintegrate in two steps of two-proton decay passing through the 6Beg.s. intermediate state. The isobaric analog of 8Cg.s. in 8B was also found to undergo two-proton decay to the isobaric analog of 6Beg.s. in 6Li. A 9.69-MeV state in 10C was found to undergo prompt 4-body decay to the 2p+2alpha exit channel. The two protons were found to have a strong enhancementin the diproton region and the relative energies of all four p-alpha pairs were consistent with the 5Lig.s. resonance

    Angular Dependence in Proton-Proton Correlation Functions in Central 40Ca+40Ca^{40}Ca+^{40}Ca and 48Ca+48Ca^{48}Ca+^{48}Ca Reactions

    Full text link
    The angular dependence of proton-proton correlation functions is studied in central 40Ca+40Ca^{40}Ca+^{40}Ca and 48Ca+48Ca^{48}Ca+^{48}Ca nuclear reactions at E=80 MeV/A. Measurements were performed with the HiRA detector complemented by the 4Ď€\pi Array at NSCL. A striking angular dependence in the laboratory frame is found within p-p correlation functions for both systems that greatly exceeds the measured and expected isospin dependent difference between the neutron-rich and neutron-deficient systems. Sources measured at backward angles reflect the participant zone of the reaction, while much larger sources observed at forward angles reflect the expanding, fragmenting and evaporating projectile remnants. The decrease of the size of the source with increasing momentum is observed at backward angles while a weaker trend in the opposite direction is observed at forward angles. The results are compared to the theoretical calculations using the BUU transport model.Comment: 8 pages, 3 figures, submitted to PR

    On Determining Dead Layer and Detector Thicknesses for a Position-Sensitive Silicon Detector

    Get PDF
    In this work, two particular properties of the position-sensitive, thick silicon detectors (known as the "E" detectors) in the High Resolution Array (HiRA) are investigated: the thickness of the dead layer on the front of the detector, and the overall thickness of the detector itself. The dead layer thickness for each E detector in HiRA is extracted using a measurement of alpha particles emitted from a 212^{212}Pb pin source placed close to the detector surface. This procedure also allows for energy calibrations of the E detectors, which are otherwise inaccessible for alpha source calibration as each one is sandwiched between two other detectors. The E detector thickness is obtained from a combination of elastically scattered protons and an energy-loss calculation method. Results from these analyses agree with values provided by the manufacturer.Comment: Accepted for publication in Nuclear Instruments and Methods in Physics Researc

    Survey of ground state neutron Spectroscopic Factors from Li to Cr isotopes

    Full text link
    The ground state neutron spectroscopic factors for 80 nuclei ranging in Z from 3 to 24 have been extracted by analyzing the past measurements of the angular distributions from (d,p) and (p,d) reactions. We demonstrate an approach that provides systematic and consistent values with minimum assumptions. For the 61 nuclei that have been described by large-basis shell-model calculations, most experimental spectroscopic factors are reproduced to within 20%.Comment: 12 pages, 2 figures, 2 table

    Reduced neutron spectroscopic factors when using potential geometries constrained by Hartree-Fock calculations

    Full text link
    We carry out a systematic analysis of angular distribution measurements for selected ground-state to ground-state (d,p) and (p,d) neutron transfer reactions, including the calcium isotopes. We propose a consistent three-body model reaction methodology in which we constrain the transferred-neutron bound state and nucleon-target optical potential geometries using modern Hartree-Fock calculations. Our deduced neutron spectroscopic factors are found to be suppressed by ~30% relative to independent-particle shell-model values, from 40Ca through 49Ca. The other nuclei studied, ranging from B to Ti, show similar average suppressions with respect to large-basis shell-model expectations. Our results are consistent with deduced spectroscopic strengths for neutrons and protons from intermediate energy nucleon knockout reactions, and for protons from (e,e'p) reactions, on well-bound nuclei. PACS: 24.50.+g, 24.10.Eq, 25.40.-h, 25.45.-zComment: 13 pages, 2 figures, Submitted to Physical Review
    • …
    corecore