26 research outputs found

    Severe Primary Hyperparathyroidism Caused by Parathyroid Carcinoma in a 13‐Year‐Old Child; Novel Findings From HRpQCT

    Get PDF
    Primary hyperparathyroidism is a condition that occurs infrequently in children. Parathyroid carcinoma, as the underlying cause of hyperparathyroidism in this age group, is extraordinarily rare, with only a few cases reported in the literature. We present a 13-year-old boy with musculoskeletal pain who was found to have brown tumors from primary hyperparathyroidism caused by parafibromin-immunodeficient parathyroid carcinoma. Our patient had no clinical, biochemical, or radiographic evidence of pituitary adenomas, pancreatic tumors, thyroid tumors, pheochromocytoma, jaw tumors, renal abnormalities, or testicular lesions. Germline testing for AP2S1, CASR, CDC73/HRPT2, CDKN1B, GNA11, MEN1, PTH1R, RET, and the GCM2 gene showed no pathological variants, and a microarray of CDC73/HRPT2 did not reveal deletion or duplication. He was managed with i.v. fluids, calcitonin, pamidronate, and denosumab prior to surgery to stabilize hypercalcemia. After removal of a single parathyroid tumor, he developed severe hungry bone syndrome and required 3 weeks of continuous i.v. calcium infusion, in addition to oral calcium and activated vitamin D. Histopathological examination identified an angioinvasive parathyroid carcinoma with global loss of parafibromin (protein encoded by CDC73/HRPT2).HRpQCT and DXA studies were obtained prior to surgery and 18-months postsurgery. HRpQCT showed a resolution of osteolytic lesions combined with structural improvement of cortical porosity and an increase in both cortical thickness and density compared with levels prior to treatment. These findings highlight the added value of HRpQCT in primary hyperparathyroidism. In addition to our case, we have provided a review of the published cases of parathyroid cancer in children

    Lost bones: differential diagnosis of acro-osteolysis seen by the pediatric rheumatologist

    No full text
    Abstract Introduction Acro-osteolysis is a radiographic finding which refers to bone resorption of the distal phalanges. Acro-osteolysis is associated with various conditions and its presence should prompt the clinician to search for the underlying etiology. The aim of this review is to discuss disorders with which acro-osteolysis is associated and their distinguishing features, with a focus on the pediatric population. Methods A targeted literature review was performed using the term “acro-osteolysis” in combination with other key terms. The primary search results were supplemented using reference citations. Articles published prior to the year 2000 were included if they described additional associations not encountered in the more recent literature. Results Genetic disorders (particularly primary hypertrophic osteoarthropathy and skeletal dysplasias) and rheumatic diseases (particularly psoriatic arthritis and systemic sclerosis) are the most frequently encountered conditions associated with acro-osteolysis in children. Hyperparathyroidism, neuropathy, local trauma and thermal injury, and spinal dysraphism should also be included in the differential diagnosis. Conclusion Although acro-osteolysis is uncommon, its presence should prompt the clinician to consider a differential diagnosis based on clinical and radiographic features

    Thiemann disease and familial digital arthropathy – brachydactyly: two sides of the same coin?

    Get PDF
    Abstract Background Familial digital arthropathy-brachydactyly (FDAB) and Thiemann disease are non-inflammatory digital arthropathies with many phenotypic similarities. Thirty-three cases of Thiemann disease have been described so far (Mangat et al, Ann Rheum Dis 64:11-2, 2005; Ha et al, Thiemann's disease: a case Report, 2017) but no gene variants have been identified as causative to date. FDAB is reported in only a few patients and has been associated with three heterozygous missense variants in the Transient receptor potential vanilloid 4 (TRPV4) gene. We report a TRPV4 variant in a father and son referred with a diagnosis of Thiemann disease and compare the clinical and radiological features of Thiemann disease with Familial digital arthropathy-brachydactyly (FDAB). We hypothesize that these two entities may be one and the same. Methods We describe a father and son referred with a diagnosis of Thiemann disease who were subsequently identified with a heterozygous variant (c.809G > T) in TRPV4. The identical genetic variant was previously reported to cause FDAB. A PUBMED¼ database search was conducted to retrieve articles related to Thiemann disease and FDAB. We were able to review the clinical and radiological findings of nineteen individuals affected by Thiemann disease and compare them with three families affected by FDAB. Results Thiemann disease initially affects the proximal interphalangeal joints and primarily the middle phalangeal bases. In FDAB, the distal phalangeal joints are first affected with the middle phalangeal heads being the primary site of changes. Radial deviation has only been described in FDAB. Our analysis determined that 5 of 20 individuals affected by Thiemann disease have clinical and radiological findings that also fit well with FDAB. Conclusion FDAB and Thiemann disease are non-inflammatory digital arthropathies with phenotypic overlap. Although more extensive joint involvement, a distal hand joint preponderance and brachydactyly are expected in FDAB, there are striking clinical and radiological similarities between the two entities. Our analysis suggests that these two phenotypes may represent phenotypic variability of the same entity. Despite many attempts to identify other reported patients affected by Thiemann disease, we were not able to procure DNA from any of the cases to verify our findings. Genetic testing of an affected individual will be crucial in order to provide accurate reproductive genetic counselling about the autosomal dominant nature of this condition

    Scapular Notching on Kinematic Simulated Range of Motion After Reverse Shoulder Arthroplasty Is Not the Result of Impingement in Adduction

    No full text
    Impingement after reverse shoulder arthroplasty (RSA) is believed to occur from repetitive contact in adduction between the humeral component and the inferior scapular pillar. The primary purpose of this biomechanical study was to confirm the presence of different types of impingement and to examine which daily-life movements are responsible for them. A secondary aim was to provide recommendations on the type of components that would best minimize notching and loss of range of motion (ROM).The study included 12 fresh frozen shoulder specimens; each had a computed tomography (CT) image of the entire scapula and humerus in order to acquire topological information of the bones before RSA implantation. Cyclic tests were run postimplantation with 3 shoulders in each modalities. To quantify bone loss due to impingement, 3-dimensional anatomical models of the scapula were reconstructed from the CT scans and compared to their intact states.We found 8 bony impingements in 7 specimens: 2 at the lateral acromion, 1 at the inferior acromion, 4 scapular notching, and 1 with the glenoid resulting to wear at the 3:00 to 6:00 clock-face position. Impingements occurred in all kinds of tested motions, except for the internal/external rotation at 90° of abduction. The 3 specimens tested in abduction/adduction presented bone loss on the acromion side only. Scapular notching was noted in flexion/extension and in internal/external rotation at 0° of abduction. The humeral polyethylene liner was worn in 2 specimens-1 at the 6:00 to 8:00 clock-face position during internal/external rotation at 0° of abduction and 1 at the 4:00 clock-face position during flexion/extension.The present study revealed that 2 types of impingement interactions coexist and correspond to a frank abutment or lead to a scapular notching (friction-type impingement). Scapular notching seems to be caused by more movements or combination of movements than previously considered, and in particular by movements of flexion/extension and internal/external rotation with the arm at the side. Polyethylene cups with a notch between 3 and 9 o'clock and lower neck-shaft angle (145° or 135°) may play an important role in postoperative ROM limiting scapular notching

    Monogenic autoinflammatory diseases in children: single center experience with clinical, genetic, and imaging review

    No full text
    Abstract Purpose 1. To review the contemporary literature and present a list of the imaging findings for patients with autoinflammatory diseases from our hospital. All these patients are found to have a genetic mutation that is responsible for their disease. 2. To present follow-up imaging findings, when available, and correlate those with symptoms and type of treatment administered in approximately 40 patients with autoinflammatory diseases of a single tertiary pediatric health care center including familial Mediterranean fever, Cryopyrin-associated autoinflammatory syndrome, PAPA (pyogenic arthritis, pyoderma gangrenousum, and acne) syndrome, and more. These findings are related to disease progression, treatment response, or treatment-induced changes. Conclusion Autoinflammatory diseases are relatively rare entities that can affect any system of the body. Given the many nonspecific imaging features, awareness of these diseases and good communication with clinicians aid in reaching an accurate diagnosis

    Tibia stress injury and the imaging appearance of stress fracture in juvenile dermatomyositis: six patients’ experiences

    No full text
    Abstract Background Tibial stress injuries are frequent injuries of the lower extremity and the most common causes of exercise-induced leg pain among athletes and military recruits. They sometimes occur in patients with pathological conditions of bone metabolism such as osteoporosis or rheumatoid arthritis, but there are previously no cases reported in juvenile dermatomyositis (JDM). Here we report 6 JDM patients who presented with shin pain, and the imaging appearance of tibial stress fractures or stress reactions. Case presentation All 6 patients with JDM presented with shin pain or tenderness in the anterior tibia without any evidence of excessive exercise or traumatic episode. They were diagnosed with tibial stress injuries based on a combination of radiographs, three-phase bone scans, and magnetic resonance imaging (MRI), and 5 out of 6 patients had been treated with prednisone and/or methotrexate at onset of tibial stress injuries. In one patient, we could not find any abnormalities in his radiograph, but the subsequent MRI showed tibial stress reaction. In all 6 patients, the tibial stress injuries improved with only rest and/or analgesics. Conclusion We experienced 6 children with JDM who presented with shin pain, and who were diagnosed with tibial stress fractures or stress reactions. Their underlying disease and weakness, treatment with glucocorticoid and methotrexate, or inactivity may have resulted in these tibial injuries, and made these patients more predisposed than other children. In addition to preventing JDM patients from getting osteoporosis, we need to consider stress reactions when children with JDM complain of sudden shin pain

    Image guided sacroiliac joint corticosteroid injections in children: an 18-year single-center retrospective study

    No full text
    Abstract Background Sacroiliitis is commonly seen in enthesitis-related arthritis (ERA), a subtype of juvenile idiopathic arthritis (JIA). Sacroiliitis is characterized by the inflammation of the sacroiliac (SI) joints (+/− adjacent tissues). The treatment options include systemic therapy with or without corticosteroid SI joint injections. Image guided SI joint injections are frequently requested in pediatric patients with sacroiliitis. The purpose of this study was to evaluate the feasibility and efficacy of SI joint injections in children with sacroiliitis. Methods A retrospective study of patients referred to Interventional Radiology (IR) for SI joint corticosteroid injections (2000–2018). Clinical information was collected from Electronic Patient Charts and procedural details from PACS. Efficacy was determined clinically, by MRI, or both when available. Results 50 patients (13.8 years; M:F = 35:15) underwent image-guided SI joint corticosteroid injections. Most common indications were JIA (84%) and inflammatory bowel disease (14%). 80% had bilateral injections. 80% were performed under general anesthesia and 20% under sedation. The corticosteroid of choice was triamcinolone hexacetonide in 98% of patients. Needle guidance and confirmation was performed using CT and fluoroscopy (54%), Cone Beam CT (CBCT, 46%), with initial ultrasound assistance in 34%. All procedures were technically successful without any complications. 32/50 patients had long-term follow-up (2 years); 21/32 (66%) had clinical improvement within 3-months. Of 15 patients who had both pre- and post-procedure MRIs, 93% showed short-term improvement. At 2 years, 6% of patients were in remission, 44% continued the same treatment and 47% escalated treatment. Conclusion Image-guided SI joint injections are safe and technically feasible in children. Imaging modalities for guidance have evolved, with CBCT being the current first choice. Most patients showed short-term clinical and imaging improvement, requiring long-term maintenance or escalation of medical treatment
    corecore