44 research outputs found

    Availability of healthier options in traditional and nontraditional rural fast-food outlets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Food prepared away from home has become increasingly popular to U.S. families, and may contribute to obesity. Sales have been dominated by fast food outlets, where meals are purchased for dining away from home or in the home. Although national chain affiliated fast-food outlets are considered the main source for fast food, fast foods are increasingly available in convenience stores and supermarkets/grocery stores. In rural areas, these nontraditional fast-food outlets may provide most of the opportunities for procurement of fast foods.</p> <p>Methods</p> <p>Using all traditional and nontraditio nal fast-food outlets identified in six counties in rural Texas, the type and number of regular and healthiermenu options were surveyed using on-site observation in all food venues that were primarily fast food, supermarket/grocery store, and convenience store and compared with 2005 Dietary Guidelines.</p> <p>Results</p> <p>Traditional fast-food outlets represented 84 (41%) of the 205 opportunities for procurement of fast food; 109 (53.2%) were convenience stores and 12 (5.8%) supermarkets/grocery stores. Although a s imilar variety of regular breakfast and lunch/dinner entrées were available in traditional fast-food outlets and convenience stores, the variety of healthier breakfast and lunch/dinner entrées was significantly greater in fast food outlets. Compared with convenience stores, supermarkets/grocery stores provided a greater variety of regular and healthier entrées and lunch/dinner side dishes.</p> <p>Conclusion</p> <p>Convenience stores and supermarkets/grocery stores more than double the potential access to fast foods in this rural area than traditional fast-food outlets alone; however, traditional fast food outlets offer greater opportunity for healthier fast food options than convenience stores. A complete picture of fast food environment and the availability of healthier fast food options are essential to understand environmental influences on diet and health outcomes, and identify potential targets for intervention.</p

    Nrf2-mediated neuroprotection response to recurrent hypoglycemia is insufficient to prevent cognitive impairment in a rodent model of type 1 diabetes

    Get PDF
    It remains uncertain whether recurrent nonsevere hypoglycemia (Hypo) results in long-term cognitive impairment in type 1 diabetes (T1D). This study tested the hypothesis that specifically in the T1D state, Hypo leads to cognitive impairment via a pathological response to oxidative stress. Wild-type (Control) and nuclear factor–erythroid 2 p45–related factor 2 (Nrf2) null mice were studied. Eight groups of mice (Control and Nrf2−/− ± T1D and ± Hypo) were subject to recurrent, twice-weekly, insulin or saline injections over 4 weeks, after which cognitive function was assessed and brain tissue analyzed. Recurrent moderate hypoglycemia in T1D, but not Control, mice significantly impaired cognitive performance, and this was associated with hippocampal oxidative damage and inflammation despite an enhanced expression of Nrf2 and its target genes Hmox1 and Nqo1. In Nrf2−/− mice, both T1D and Hypo independently resulted in impaired cognitive performance, and this was associated with oxidative cell damage and marked inflammation. Together, these data suggest that Hypo induces an Nrf2-dependent antioxidant response in the hippocampus, which counteracts oxidative damage. However, in T1D, this neuroprotective mechanism is insufficient to prevent neuronal oxidative damage, resulting in chronic deficits in working and long-term memory.</jats:p

    RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and high light intensities: a transcriptomic and metabolomic analysis

    Get PDF
    In plants, isoprene plays a dual role: (a) as thermo-protective agent proposed to prevent degradation of enzymes/membrane structures involved in photosynthesis, and (b) as reactive molecule reducing abiotic oxidative stress. The present work addresses the question whether suppression of isoprene emission interferes with genome wide transcription rates and metabolite fluxes in grey poplar (Populusxcanescens) throughout the growing season. Gene expression and metabolite profiles of isoprene emitting wild type plants and RNAi-mediated non-isoprene emitting poplars were compared by using poplar Affymetrix microarrays and non-targeted FT-ICR-MS (Fourier transform ion cyclotron resonance mass spectrometry). We observed a transcriptional down-regulation of genes encoding enzymes of phenylpropanoid regulatory and biosynthetic pathways, as well as distinct metabolic down-regulation of condensed tannins and anthocyanins, in non-isoprene emitting genotypes during July, when high temperature and light intensities possibly caused transient drought stress, as indicated by stomatal closure. Under these conditions leaves of non-isoprene emitting plants accumulated hydrogen peroxide (H2O2), a signaling molecule in stress response and negative regulator of anthocyanin biosynthesis. The absence of isoprene emission under high temperature and light stress resulted transiently in a new chemo(pheno)type with suppressed production of phenolic compounds. This may compromise inducible defenses and may render non-isoprene emitting poplars more susceptible to environmental stress

    Implications of within-farm transmission for network dynamics:Consequences for the spread of avian influenza

    Get PDF
    AbstractThe importance of considering coupled interactions across multiple population scales has not previously been studied for highly pathogenic avian influenza (HPAI) in the British commercial poultry industry. By simulating the within-flock transmission of HPAI using a deterministic S-E-I-R model, and by incorporating an additional environmental class representing infectious faeces, we tracked the build-up of infectious faeces within a poultry house over time. A measure of the transmission risk (TR) was computed for each farm by linking the amount of infectious faeces present each day of an outbreak with data describing the daily on-farm visit schedules for a major British catching company. Larger flocks tended to have greater levels of these catching-team visits. However, where density-dependent contact was assumed, faster outbreak detection (according to an assumed mortality threshold) led to a decreased opportunity for catching-team visits to coincide with an outbreak. For this reason, maximum TR-levels were found for mid-range flock sizes (~25,000–35,000 birds). When assessing all factors simultaneously using multivariable linear regression on the simulated outputs, those related to the pattern of catching-team visits had the largest effect on TR, with the most important movement-related factor depending on the mode of transmission. Using social network analysis on a further database to inform a measure of between-farm connectivity, we identified a large fraction of farms (28%) that had both a high TR and a high potential impact at the between farm level. Our results have counter-intuitive implications for between-farm spread that could not be predicted based on flock size alone, and together with further knowledge of the relative importance of transmission risk and impact, could have implications for improved targeting of control measures

    The Law and Economics of Liability Insurance: A Theoretical and Empirical Review

    Full text link

    Ileitis alters neuronal and enteroendocrine signalling in guinea pig distal colon

    No full text
    BACKGROUND AND AIMS: Intestinal inflammation alters neuronal and enteroendocrine signalling, leading to functional adaptations in the inflamed bowel. Human studies have reported functional alterations at sites distant from active inflammation. Our aims were to determine whether neuronal and enteroendocrine signalling are altered in the uninflamed colon during ileitis. METHODS: We used neurophysiological, immunohistochemical, biochemical and Ussing chamber techniques to examine the effect of 2,4,6‐trinitrobenzene sulphonic acid (TNBS)‐induced ileitis on the properties of submucosal neurones, enteroendocrine cells and epithelial physiology of the distal colon of guinea pigs. RESULTS: Three days after TNBS administration, when inflammation was restricted to the ileum, the properties of colonic enteric neurones were altered. Submucosal AH neurones were hyperexcitable and had reduced afterhyperpolarisations. S neurones received larger fast and slow excitatory postsynaptic potentials, due to an increase in non‐cholinergic synaptic transmission. Despite the absence of inflammation in the colon, we found increased colonic prostaglandin E(2) content in animals with ileitis. Ileitis also increased the number of colonic 5‐hydroxytryptamine (5‐HT)‐ and GLP‐2‐immunoreactive enteroendocrine cells. This was accompanied by an increase in stimulated 5‐HT release. Functional alterations in epithelial physiology occurred such that basal short circuit current was increased and veratridine‐stimulated ion transport was reduced in the colon of animals with ileitis. CONCLUSION: Our data suggest that inflammation at one site in the gut alters the cellular components of enteric reflex circuits in non‐inflamed regions in ways similar to those at sites of active inflammation. These changes underlie altered function in non‐involved regions during episodes of intestinal inflammation
    corecore