20 research outputs found

    Sensory Response System of Social Behavior Tied to Female Reproductive Traits

    Get PDF
    Honey bees display a complex set of anatomical, physiological, and behavioral traits that correlate with the colony storage of surplus pollen (pollen hoarding). We hypothesize that the association of these traits is a result of pleiotropy in a gene signaling network that was co-opted by natural selection to function in worker division of labor and foraging specialization. By acting on the gene network, selection can change a suite of traits, including stimulus/response relationships that affect individual foraging behavior and alter the colony level trait of pollen hoarding. The 'pollen-hoarding syndrome' of honey bees is the best documented syndrome of insect social organization. It can be exemplified as a link between reproductive anatomy (ovary size), physiology (yolk protein level), and foraging behavior in honey bee strains selected for pollen hoarding, a colony level trait. The syndrome gave rise to the forager-Reproductive Ground Plan Hypothesis (RGPH), which proposes that the regulatory control of foraging onset and foraging preference toward nectar or pollen was derived from a reproductive signaling network. This view was recently challenged. To resolve the controversy, we tested the associations between reproductive anatomy, physiology, and stimulus/response relationships of behavior in wild-type honey bees.Central to the stimulus/response relationships of honey bee foraging behavior and pollen hoarding is the behavioral trait of sensory sensitivity to sucrose (an important sugar in nectar). To test the linkage of reproductive traits and sensory response systems of social behavior, we measured sucrose responsiveness with the proboscis extension response (PER) assay and quantified ovary size and vitellogenin (yolk precursor) gene expression in 6-7-day-old bees by counting ovarioles (ovary filaments) and by using semiquantitative real time RT-PCR. We show that bees with larger ovaries (more ovarioles) are characterized by higher levels of vitellogenin mRNA expression and are more responsive to sucrose solutions, a trait that is central to division of labor and foraging specialization.Our results establish that in wild-type honey bees, ovary size and vitellogenin mRNA level covary with the sucrose sensory response system, an important component of foraging behavior. This finding validates links between reproductive physiology and behavioral-trait associations of the pollen-hoarding syndrome of honey bees, and supports the forager-RGPH. Our data address a current evolutionary debate, and represent the first direct demonstration of the links between reproductive anatomy, physiology, and behavioral response systems that are central to the control of complex social behavior in insects

    A Search for Parent-of-Origin Effects on Honey Bee Gene Expression

    Get PDF
    Parent-specific gene expression (PSGE) is little known outside of mammals and plants. PSGE occurs when the expression level of a gene depends on whether an allele was inherited from the mother or the father. Kin selection theory predicts that there should be extensive PSGE in social insects because social insect parents can gain inclusive fitness benefits by silencing parental alleles in female offspring. We searched for evidence of PSGE in honey bees using transcriptomes from reciprocal crosses between European and Africanized strains. We found 46 transcripts with significant parent-of-origin effects on gene expression, many of which overexpressed the maternal allele. Interestingly, we also found a large proportion of genes showing a bias toward maternal alleles in only one of the reciprocal crosses. These results indicate that PSGE may occur in social insects. The nonreciprocal effects could be largely driven by hybrid incompatibility between these strains. Future work will help to determine if these are indeed parent-of-origin effects that can modulate inclusive fitness benefits

    Finding the missing honey bee genes: lessons learned from a genome upgrade

    Get PDF
    BACKGROUND: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. RESULTS: Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. CONCLUSIONS: Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.Funding for the project was provided by a grant to RG from the National Human Genome Research Institute, National Institutes of Health (NHGRI, NIH) U54 HG003273. Contributions from members of the CGE lab were supported by Agriculture and Food Research Initiative Competitive grant no. 2010- 65205-20407 from the USDA National Institute of Food Agriculture. AKB was supported by a Clare Luce Booth Fellowship at Georgetown University

    High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees.

    Get PDF
    Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL). Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21) and a suggestive QTL on chromosome 1 (LOD = 1.95). The QTL confidence interval on chromosome 9 contains the gene 'no receptor potential A' and a dopamine receptor. 'No receptor potential A' is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection

    Association of Sucrose Responsiveness, Ovary Size, and <i>Vitellogenin</i> mRNA Level in Worker Honey Bees.

    No full text
    <p>(A) Means and standard errors of the ovary sizes in the subsets of bees selected from the extreme tails of the ovariole number and GRS and distributions; LL = small ovaries (3–9 ovarioles) and low GRS (0–2), HH = large ovaries (17–29 ovarioles) and high GRS (4–7), <i>n</i> = 44 and 43, respectively. L and H were laboratory handling controls that were selected only on the basis of ovary size, GRS was not determined (<i>n</i> = 10; ovariole number was 3–9 and 12–23, respectively, H spanned lower ovary sizes than HH as there were not a sufficient number of bees to obtain in the 17–29 range). HH and LL differ significantly for ovariole number (P<0.0001, one-way ANOVA). (B) Means and standard errors of the log-transformed <i>vitellogenin</i> mRNA expression level given as a relative quantity (RQ). Bees with large ovaries and high GRS are characterized by significantly higher <i>vitellogenin</i> levels on average (P<0.005, one-way ANOVA). The controls show no significant effect of handling.</p

    Relationships between Sucrose Responsiveness and Ovary Size in Worker Honey Bees.

    No full text
    <p>(A) Pie charts showing the distributions of ovary sizes between bees with low (GRS 0–3, <i>n</i> = 141) and high (GRS 4–9, <i>n</i> = 149) responsiveness to sucrose. Ovary sizes are given as the total number of ovarioles per bee (i.e., summing over both ovaries). (B) Comparison between the means and standard errors of ovary sizes between bees with low and high sucrose responsiveness. Bees with high GRS scores are characterized by significantly larger ovaries on average.</p

    Fine-Scale Linkage Mapping Reveals a Small Set of Candidate Genes Influencing Honey Bee Grooming Behavior in Response to Varroa Mites

    Get PDF
    <div><p>Populations of honey bees in North America have been experiencing high annual colony mortality for 15–20 years. Many apicultural researchers believe that introduced parasites called Varroa mites (<em>V. destructor</em>) are the most important factor in colony deaths. One important resistance mechanism that limits mite population growth in colonies is the ability of some lines of honey bees to groom mites from their bodies. To search for genes influencing this trait, we used an Illumina Bead Station genotyping array to determine the genotypes of several hundred worker bees at over a thousand single-nucleotide polymorphisms in a family that was apparently segregating for alleles influencing this behavior. Linkage analyses provided a genetic map with 1,313 markers anchored to genome sequence. Genotypes were analyzed for association with grooming behavior, measured as the time that individual bees took to initiate grooming after mites were placed on their thoraces. Quantitative-trait-locus interval mapping identified a single chromosomal region that was significant at the chromosome-wide level (p<0.05) on chromosome 5 with a LOD score of 2.72. The 95% confidence interval for quantitative trait locus location contained only 27 genes (honey bee official gene annotation set 2) including <em>Atlastin</em>, <em>Ataxin</em> and <em>Neurexin-1 (AmNrx1)</em>, which have potential neurodevelopmental and behavioral effects. <em>Atlastin</em> and <em>Ataxin</em> homologs are associated with neurological diseases in humans. <em>AmNrx1</em> codes for a presynaptic protein with many alternatively spliced isoforms. <em>Neurexin-1</em> influences the growth, maintenance and maturation of synapses in the brain, as well as the type of receptors most prominent within synapses. <em>Neurexin-1</em> has also been associated with autism spectrum disorder and schizophrenia in humans, and self-grooming behavior in mice.</p> </div

    Candidate genes involved in neurological signaling or regulation in QTL region on chromosome 1.

    No full text
    <p>Candidate genes involved in neurological signaling or regulation in QTL region on chromosome 1.</p
    corecore