1,092 research outputs found
Concurrent and distinct transcription and translation of transforming growth factor-beta type I and type II receptors in rodent embryogenesis
The transforming growth factor-betas (TGF-betas) are multifunctional regulatory polypeptides that play a crucial role in many cell processes and function through a set of cell surface protein receptors that includes TGF-beta type I (RI) and type II (RII). The present study reports a comprehensive comparison of the patterns of expression of TGF-beta RI and RII proteins and mRNAs in the developing mouse embryo using immunohistochemical and in situ hybridization analyses. Although widespread expression of both TGF-beta receptors was detected throughout the embryonic development period so that many similarities occur in localization of the TGF-beta receptors, TGF-beta RI was expressed in a well-defined, non-uniform pattern that was different in many respects from that of TGF-beta RII. Whereas higher levels of TGF-beta RI compared to TGF-beta RII were detected in some tissues of the embryo at the beginning of organogenesis, the level of TGF-beta RII increased more dramatically than that of TGF-beta RI during late organogenesis; this was especially true in many neural structures where TGF-beta RI and RII were comparable by day 16. The lung, kidney and intestine, in which epithelial-mesenchymal interactions occur, showed a complex pattern of TGF-beta RI and Rll expression. Additionally, northern blot hybridization and reverse transcription-polymerase chain reaction (RT-PCR) amplification showed non-uniform expression of the transcripts for TGF-beta RI and RII in embryonic and adult mouse and rat tissues. These data show that regulation of TGF-beta1 RI and RII occurs concurrently, but distinctly, in a spatial and temporal manner in rodent embryogenesis which may allow control of signal transduction of TGF-beta during development
GW150914: First search for the electromagnetic counterpart of a gravitational-wave event by the TOROS collaboration
We present the results of the optical follow-up conducted by the TOROS
collaboration of the first gravitational-wave event GW150914. We conducted
unfiltered CCD observations (0.35-1 micron) with the 1.5-m telescope at Bosque
Alegre starting ~2.5 days after the alarm. Given our limited field of view
(~100 square arcmin), we targeted 14 nearby galaxies that were observable from
the site and were located within the area of higher localization probability.
We analyzed the observations using two independent implementations of
difference-imaging algorithms, followed by a Random-Forest-based algorithm to
discriminate between real and bogus transients. We did not find any bona fide
transient event in the surveyed area down to a 5-sigma limiting magnitude of
r=21.7 mag (AB). Our result is consistent with the LIGO detection of a binary
black hole merger, for which no electromagnetic counterparts are expected, and
with the expected rates of other astrophysical transients.Comment: ApJ Letters, in pres
Determination of nonthermal bonding origin of a novel photoexcited lattice instability in SnSe
Interatomic forces that bind materials are largely determined by an often
complex interplay between the electronic band-structure and the atomic
arrangements to form its equilibrium structure and dynamics. As these forces
also determine the phonon dispersion, lattice dynamics measurements are often
crucial tools for understanding how materials transform between different
structures. This is the case for the mono-chalcogenides which feature a number
of lattice instabilities associated with their network of resonant bonds and a
large tunability in their functional properties. SnSe hosts a novel lattice
instability upon above-bandgap photoexcitation that is distinct from the
distortions associated with its high temperature phase transition,
demonstrating that photoexcitation can alter the interatomic forces
significantly different than thermal excitation. Here we report decisive
time-resolved X-ray scattering-based measurements of the nonequlibrium lattice
dynamics in SnSe. By fitting interatomic force models to the excited-state
dispersion, we determine this instability as being primarily due to changes in
the fourth-nearest neighbor bonds that connect bilayers, with relatively little
change to the intralayer resonant bonds. In addition to providing critical
insight into the nonthermal bonding origin of the instability in SnSe, such
measurements will be crucial for understanding and controlling materials
properties under non-equilibrium conditions
Genetically determined Amerindian ancestry correlates with increased frequency of risk alleles for systemic lupus erythematosus
Objective To assess whether genetically determined Amerindian ancestry predicts increased presence of risk alleles of known susceptibility genes for systemic lupus erythematosus (SLE). Methods Single-nucleotide polymorphisms (SNPs) within 16 confirmed genetic susceptibility loci for SLE were genotyped in a set of 804 Mestizo lupus patients and 667 Mestizo healthy controls. In addition, 347 admixture informative markers were genotyped. Individual ancestry proportions were determined using STRUCTURE. Association analysis was performed using PLINK, and correlation between ancestry and the presence of risk alleles was analyzed using linear regression. Results A meta-analysis of the genetic association of the 16 SNPs across populations showed that TNFSF4 , STAT4 , ITGAM , and IRF5 were associated with lupus in a Hispanic Mestizo cohort enriched for European and Amerindian ancestry. In addition, 2 SNPs within the major histocompatibility complex region, previously shown to be associated in a genome-wide association study in Europeans, were also associated in Mestizos. Using linear regression, we predicted an average increase of 2.34 risk alleles when comparing an SLE patient with 100% Amerindian ancestry versus an SLE patient with 0% Amerindian ancestry ( P < 0.0001). SLE patients with 43% more Amerindian ancestry were predicted to carry 1 additional risk allele. Conclusion Our results demonstrate that Amerindian ancestry is associated with an increased number of risk alleles for SLE.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78480/1/27753_ftp.pd
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
- âŠ