27 research outputs found

    Role of negative regulation of immune signaling pathways in neutrophil function

    Full text link
    Polymorphonuclear neutrophils (PMNs) play a critical role in host defense against infection and in the resolution of inflammation. However, immune responses mediated by PMN must be tightly regulated to facilitate elimination of invading pathogens without inducing detrimental inflammation and host tissue damage. Specific engagement of cell surface immunoreceptors by a diverse range of extracellular signals regulates PMN effector functions through differential activation of intracellular signaling cascades. Although mechanisms of PMN activation mediated via cell signaling pathways have been well described, less is known about negative regulation of PMN function by immune signaling cascades. Here, we provide an overview of immunoreceptor‐mediated negative regulation of key PMN effector functions including maturation, migration, phagocytosis, reactive oxygen species release, degranulation, apoptosis, and NET formation. Increased understanding of mechanisms of suppression of PMN effector functions may point to possible future therapeutic targets for the amelioration of PMN‐mediated autoimmune and inflammatory diseases.Review on how PMN functions are negatively regulated by immune signaling pathways.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145227/1/jlb10023.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145227/2/jlb10023_am.pd

    Regulation of neutrophil function by selective targeting of glycan epitopes expressed on the integrin CD11b/CD18

    Full text link
    Polymorphonuclear neutrophils (PMNs) play a critical role in the innate immune response to invading pathogens. However, dysregulated mucosal trafficking of PMNs and associated epithelial tissue damage is a pathological hallmark of numerous inflammatory conditions including inflammatory bowel disease. The glycoprotein CD11b/CD18 plays a well‐described role in regulating PMN transepithelial migration and PMN inflammatory functions. Previous studies have demonstrated that targeting of the N‐linked glycan Lewis X on CD11b blocks PMN transepithelial migration (TEpM). Given evidence of glycosylation‐dependent regulation of CD11b/CD18 function, we performed MALDI TOF Mass Spectrometry (MS) analyses on CD11b/CD18 purified from human PMNs. Unusual glycan epitopes identified on CD11b/CD18 included high Mannose oligosaccharides recognized by the Galanthus Nivalis lectin and biantennary galactosylated N‐glycans recognized by the Phaseolus Vulgaris erythroagglutinin lectin. Importantly, we show that selective targeting of glycans on CD11b with such lectins results in altered intracellular signaling events that inhibit TEpM and differentially affect key PMN inflammatory functions including phagocytosis, superoxide release and apoptosis. Taken together, these data demonstrate that discrete glycan motifs expressed on CD11b/CD18 such as biantennary galactose could represent novel targets for selective manipulation of CD11b function and reduction of PMN‐associated tissue damage in chronic inflammatory diseases.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/1/fsb220152-sup-0003-FigS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/2/fsb220152_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/3/fsb220152-sup-0004-TableS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/4/fsb220152-sup-0001-FigS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/5/fsb220152.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/6/fsb220152-sup-0002-FigS2.pd

    Expression of Lewis‐a glycans on polymorphonuclear leukocytes augments function by increasing transmigration

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141391/1/jlb0753.pd

    Estrogen Receptor-Alpha (ESR1) Governs the Lower Female Reproductive Tract Vulnerability to Candida albicans

    Get PDF
    Estradiol-based therapies predispose women to vaginal infections. Moreover, it has long been known that neutrophils are absent from the vaginal lumen during the ovulatory phase (high estradiol). However, the mechanisms that regulate neutrophil influx to the vagina remain unknown. We investigated the neutrophil transepithelial migration (TEM) into the vaginal lumen. We revealed that estradiol reduces the CD44 and CD47 epithelial expression in the vaginal ectocervix and fornix, which retain neutrophils at the apical epithelium through the estradiol receptor-alpha. In contrast, luteal progesterone increases epithelial expression of CD44 and CD47 to promote neutrophil migration into the vaginal lumen and Candida albicans destruction. Distinctive to vaginal mucosa, neutrophil infiltration is contingent to sex hormones to prevent sperm from neutrophil attack; although it may compromise immunity during ovulation. Thus, sex hormones orchestrate tolerance and immunity in the vaginal lumen by regulating neutrophil TEM.The authors thank the units of flow cytometry, cell culture and statistical analysis. We are grateful to J. Villarejo, M. Fernandez-Garcia, and F. Sanchez-Cobos, for expert help and support. This work was partially supported by Fundacion Mutua Madrilena and the Ministry of Economy and Competitiveness ISCIII-FIS grants PI13/00269, PI16/00050, and PI17/01324, co-financed by ERDF (FEDER) Funds from the European Commission, ``A way of making Europe.´´ MR holds a Miguel Servet II contract (CPII14/00009). LS-M holds a IiSGM intramural contract.S

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication
    corecore