112 research outputs found

    Using A Smartboard Smartly: Considering Digital Tools for Interaction, Collaboration and Storytelling

    Get PDF
    This paper shares a book project completed in an urban Grade 1 school. While the project itself is not unique, the authentic use of multiple technologies to support the process to develop it is. The terms interaction, collaboration, and student ownership are often used to describe inquiry-based teaching and learning, and the project described here illustrates what they might mean in actual practice. Further, this paper situates the book project within the literature of Information, Communication Technology (ICT) and arts based instruction, providing an example of classroom-based technologies to enhance teaching and learning

    Loss-of-Function Mutations in Rab Escort Protein 1 (REP-1) Affect Intracellular Transport in Fibroblasts and Monocytes of Choroideremia Patients

    Get PDF
    BACKGROUND: Choroideremia (CHM) is a progressive X-linked retinopathy caused by mutations in the CHM gene, which encodes Rab escort protein-1 (REP-1), an escort protein involved in the prenylation of Rabs. Under-prenylation of certain Rabs, as a result of loss of function mutations in REP-1, could affect vesicular trafficking, exocytosis and secretion in peripheral cells of CHM patients. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate this hypothesis, intracellular vesicle transport, lysosomal acidification and rates of proteolytic degradation were studied in monocytes (CD14+ fraction) and primary skin fibroblasts from the nine age-matched controls and thirteen CHM patients carrying 10 different loss-of-function mutations. With the use of pHrodo BioParticles conjugated with E. coli, collagen I coated FluoSpheres beads and fluorescent DQ ovalbumin with BODYPY FL dye, we demonstrated for the first time that lysosomal pH was increased in monocytes of CHM patients and, as a consequence, the rates of proteolytic degradation were slowed. Microarray analysis of gene expression revealed that some genes involved in the immune response, small GTPase regulation, transcription, cell adhesion and the regulation of exocytosis were significantly up and down regulated in cells from CHM patients compared to controls. Finally, CHM fibroblasts secreted significantly lower levels of cytokine/growth factors such as macrophage chemoattractant protein-1 (MCP-1), pigment epithelial derived factor (PEDF), tumor necrosis factor (TNF) alpha, fibroblast growth factor (FGF) beta and interleukin (lL)-8. CONCLUSIONS/SIGNIFICANCE: We demonstrated for the first time that peripheral cells of CHM patients had increased pH levels in lysosomes, reduced rates of proteolytic degradation and altered secretion of cytokines. Peripheral cells from CHM patients expose characteristics that were not previously recognized and could used as an alternative models to study the effects of different mutations in the REP-1 gene on mechanism of CHM development in human population

    Carbon Monoxide Blocks Lipopolysaccharide-Induced Gene Expression by Interfering with Proximal TLR4 to NF-κB Signal Transduction in Human Monocytes

    Get PDF
    Carbon monoxide (CO) is an endogenous messenger that suppresses inflammation, modulates apoptosis and promotes vascular remodeling. Here, microarrays were employed to globally characterize the CO (250 ppm) suppression of early (1 h) LPS-induced inflammation in human monocytic THP-1 cells. CO suppressed 79 of 101 immediate-early genes induced by LPS; 19% (15/79) were transcription factors and most others were cytokines, chemokines and immune response genes. The prototypic effects of CO on transcription and protein production occurred early but decreased rapidly. CO activated p38 MAPK, ERK1/2 and Akt and caused an early and transitory delay in LPS-induced JNK activation. However, selective inhibitors of these kinases failed to block CO suppression of LPS-induced IL-1β, an inflammation marker. Of CO-suppressed genes, 81% (64/79) were found to have promoters with putative NF-κB binding sites. CO was subsequently shown to block LPS-induced phosphorylation and degradation of IκBα in human monocytes, thereby inhibiting NF-κB signal transduction. CO broadly suppresses the initial inflammatory response of human monocytes to LPS by reshaping proximal events in TLR4 signal transduction such as stress kinase responses and early NF-κB activation. These rapid, but transient effects of CO may have therapeutic applications in acute pulmonary and vascular injury

    cGMP-independent nitric oxide signaling and regulation of the cell cycle

    Get PDF
    BACKGROUND: Regulatory functions of nitric oxide (NO(•)) that bypass the second messenger cGMP are incompletely understood. Here, cGMP-independent effects of NO(• )on gene expression were globally examined in U937 cells, a human monoblastoid line that constitutively lacks soluble guanylate cyclase. Differentiated U937 cells (>80% in G0/G1) were exposed to S-nitrosoglutathione, a NO(• )donor, or glutathione alone (control) for 6 h without or with dibutyryl-cAMP (Bt(2)cAMP), and then harvested to extract total RNA for microarray analysis. Bt(2)cAMP was used to block signaling attributable to NO(•)-induced decreases in cAMP. RESULTS: NO(• )regulated 110 transcripts that annotated disproportionately to the cell cycle and cell proliferation (47/110, 43%) and more frequently than expected contained AU-rich, post-transcriptional regulatory elements (ARE). Bt(2)cAMP regulated 106 genes; cell cycle gene enrichment did not reach significance. Like NO(•), Bt(2)cAMP was associated with ARE-containing transcripts. A comparison of NO(• )and Bt(2)cAMP effects showed that NO(• )regulation of cell cycle genes was independent of its ability to interfere with cAMP signaling. Cell cycle genes induced by NO(• )annotated to G1/S (7/8) and included E2F1 and p21/Waf1/Cip1; 6 of these 7 were E2F target genes involved in G1/S transition. Repressed genes were G2/M associated (24/27); 8 of 27 were known targets of p21. E2F1 mRNA and protein were increased by NO(•), as was E2F1 binding to E2F promoter elements. NO(• )activated p38 MAPK, stabilizing p21 mRNA (an ARE-containing transcript) and increasing p21 protein; this increased protein binding to CDE/CHR promoter sites of p21 target genes, repressing key G2/M phase genes, and increasing the proportion of cells in G2/M. CONCLUSION: NO(• )coordinates a highly integrated program of cell cycle arrest that regulates a large number of genes, but does not require signaling through cGMP. In humans, antiproliferative effects of NO(• )may rely substantially on cGMP-independent mechanisms. Stress kinase signaling and alterations in mRNA stability appear to be major pathways by which NO(• )regulates the transcriptome

    Impact of animal strain on gene expression in a rat model of acute cardiac rejection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The expression levels of many genes show wide natural variation among strains or populations. This study investigated the potential for animal strain-related genotypic differences to confound gene expression profiles in acute cellular rejection (ACR). Using a rat heart transplant model and 2 different rat strains (Dark Agouti, and Brown Norway), microarrays were performed on native hearts, transplanted hearts, and peripheral blood mononuclear cells (PBMC).</p> <p>Results</p> <p>In heart tissue, strain alone affected the expression of only 33 probesets while rejection affected the expression of 1368 probesets (FDR 10% and FC ≥ 3). Only 13 genes were affected by both strain and rejection, which was < 1% (13/1368) of all probesets differentially expressed in ACR. However, for PBMC, strain alone affected 265 probesets (FDR 10% and FC ≥ 3) and the addition of ACR had little further effect. Pathway analysis of these differentially expressed strain effect genes connected them with immune response, cell motility and cell death, functional themes that overlap with those related to ACR. After accounting for animal strain, additional analysis identified 30 PBMC candidate genes potentially associated with ACR.</p> <p>Conclusion</p> <p>In ACR, genetic background has a large impact on the transcriptome of immune cells, but not heart tissue. Gene expression studies of ACR should avoid study designs that require cross strain comparisons between leukocytes.</p

    Integrating genomic information and productivity and climate-adaptability traits into a regional white spruce breeding program

    Get PDF
    Tree improvement programs often focus on improving productivity-related traits; however, under present climate change scenarios, climate change-related (adaptive) traits should also be incorporated into such programs. Therefore, quantifying the genetic variation and correlations among productivity and adaptability traits, and the importance of genotype by environment interactions, including defense compounds involved in biotic and abiotic resistance, is essential for selecting parents for the production of resilient and sustainable forests. Here, we estimated quantitative genetic parameters for 15 growth, wood quality, drought resilience, and monoterpene traits for Picea glauca (Moench) Voss (white spruce). We sampled 1,540 trees from three open-pollinated progeny trials, genotyped with 467,224 SNP markers using genotyping-by-sequencing (GBS). We used the pedigree and SNP information to calculate, respectively, the average numerator and genomic relationship matrices, and univariate and multivariate individual-tree models to obtain estimates of (co)variance components. With few site-specific exceptions, all traits examined were under genetic control. Overall, higher heritability estimates were derived from the genomic- than their counterpart pedigree-based relationship matrix. Selection for height, generally, improved diameter and water use efficiency, but decreased wood density, microfibril angle, and drought resistance. Genome-based correlations between traits reaffirmed the pedigree-based correlations for most trait pairs. High and positive genetic correlations between sites were observed (average 0.68), except for those pairs involving the highest elevation, warmer, and moister site, specifically for growth and microfibril angle. These results illustrate the advantage of using genomic information jointly with productivity and adaptability traits, and defense compounds to enhance tree breeding selection for changing climate.Instituto de Recursos BiológicosFil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; ArgentinaFil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Klutsch, Jenifer G. University of Alberta; Department of Renewable Resources; CanadaFil: Sebastian-Azcona, Jaime. University of Alberta; Department of Renewable Resources; CanadaFil: Ratchiffe, Blaise. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; CanadáFil: Xiaojing, Wei. University of Alberta; Department of Renewable Resources; CanadaFil: Da Ros, Letitia. University of British Columbia. Faculty of Forestry. Department of Wood Science; CanadáFil: Yang, Liu. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; CanadáFil: Chen, Charles. Oklahoma State University. Department of Biochemistry and Molecular Biology; Estados UnidosFil: Benowicz, Andy. Alberta Agriculture and Forestry. Forest Stewardship and Trade Branch; CanadáFil: Sadoway, Shane. Blue Ridge Lumber Inc.; CanadáFil: Mansfield, Shawn D. University of British Columbia. Faculty of Forestry. Department of Wood Science; CanadáFil: Erbilgin, Nadir. University of Alberta; Department of Renewable Resources; CanadaFil: Thomas, Barb R. University of Alberta; Department of Renewable Resources; CanadaFil: El-Kassaby, Yousry A. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canad

    Patient and provider experiences with virtual care during the COVID-19 pandemic: A mixed methods study

    Get PDF
    The COVID-19 pandemic prompted the rapid uptake of Virtual Care (VC). Positive patient outcomes with VC are previously reported but little is known about the experiences of patients and providers using VC during the pandemic. We aimed to describe patient and primary care provider experiences, satisfaction, perceptions, and attitudes to VC during the COVID-19 pandemic that might explain adoption of VC across the continuum of care and inform sustained uptake. We conducted a sequential explanatory mixed methods study using online surveys and virtual interviews with a convenience sample of primary care providers and patients in a Canadian province (July – December 2020). Eligible participants included patients and primary care providers using VC during the COVID-19 pandemic. Survey responses and interviews were analyzed using descriptive statistics and thematic analysis, respectively. Overall satisfaction was compared using the Mann-Whitney U test. Eighty-five patients and 94 primary care providers responded to the surveys. Patients reported higher overall satisfaction with VC than primary care providers (median [interquartile range]: 4.4 [4.0-4.7] and 3.7 [3.4-3.9] p \u3c 0.001). Ten patients and 11 primary care providers were interviewed. Both groups strongly appreciated VC’s increased access and convenience, identified the lack of compensation as a pre-pandemic barrier to providing VC, and reported willingness to continue VC post-COVID-19 pandemic. The COVID-19 pandemic provided an opportunity for patients and primary care providers to rapidly adopt VC with high satisfaction. Patients and primary care providers viewed VC positively due to its convenience and accessibility; both intend to continue using VC post-pandemic. Experience Framework This article is associated with the Staff & Provider Engagement lens of The Beryl Institute Experience Framework (https://www.theberylinstitute.org/ExperienceFramework). Access other PXJ articles related to this lens. Access other resources related to this lens

    NRL-Regulated Transcriptome Dynamics of Developing Rod Photoreceptors

    Get PDF
    SummaryGene regulatory networks (GRNs) guiding differentiation of cell types and cell assemblies in the nervous system are poorly understood because of inherent complexities and interdependence of signaling pathways. Here, we report transcriptome dynamics of differentiating rod photoreceptors in the mammalian retina. Given that the transcription factor NRL determines rod cell fate, we performed expression profiling of developing NRL-positive (rods) and NRL-negative (S-cone-like) mouse photoreceptors. We identified a large-scale, sharp transition in the transcriptome landscape between postnatal days 6 and 10 concordant with rod morphogenesis. Rod-specific temporal DNA methylation corroborated gene expression patterns. De novo assembly and alternative splicing analyses revealed previously unannotated rod-enriched transcripts and the role of NRL in transcript maturation. Furthermore, we defined the relationship of NRL with other transcriptional regulators and downstream cognate effectors. Our studies provide the framework for comprehensive system-level analysis of the GRN underlying the development of a single sensory neuron, the rod photoreceptor
    • …
    corecore