35 research outputs found

    Satellite Subgenomic Particles Are Key Regulators of Adeno-Associated Virus Life Cycle

    Get PDF
    Historically, adeno-associated virus (AAV)-defective interfering particles (DI) were known as abnormal virions arising from natural replication and encapsidation errors. Through single virion genome analysis, we revealed that a major category of DI particles contains a double-stranded DNA genome in a "snapback" configuration. The 5'- snapback genomes (SBGs) include the P5 promoters and partial rep gene sequences. The 3'-SBGs contains the capsid region. The molecular configuration of 5'-SBGs theoretically may allow double-stranded RNA transcription in their dimer configuration. Our studies demonstrated that 5-SBG regulated AAV rep expression and improved AAV packaging. In contrast, 3'-SBGs at its dimer configuration increased levels of cap protein. The generation and accumulation of 5'-SBGs and 3'-SBGs appears to be coordinated to balance the viral gene expression level. Therefore, the functions of 5'-SBGs and 3'-SBGs may help maximize the yield of AAV progenies. We postulate that AAV virus population behaved as a colony and utilizes its subgenomic particles to overcome the size limit of a viral genome and encodes additional essential functions

    Effects of Thermally Induced Configuration Changes on rAAV Genomeā€™s Enzymatic Accessibility

    Get PDF
    Physical titers for recombinant adeno-associated viral (rAAV) vectors are measured by quantifying viral genomes. It is generally perceived that AAV virions disassemble and release DNA upon thermal treatment. Here, we present data on enzymatic accessibility of rAAV genomes when AAV virions were subjected to thermal treatment. For rAAV vectors with a normal genome size (ā‰¤4.7 kb), thermal treatment at 75Ā°Cā€“99Ā°C allowed only āˆ¼10% of genomes to be detectable by quantitative real-time PCR. In contrast, greater than 70% of AAV genomes can be detected under similar conditions for AAV vectors with an oversized genome (ā‰„5.0 kb). The permeability of virions, as measured by ethidium bromide (EB) staining, was enhanced by thermal stimulation. These results suggest that in rAAV virions with standard-sized genomes, the capsid and DNA are close enough in proximity for heat-induced ā€œcrosslinking,ā€ which results in inaccessibility of vector DNA to enzymatic reactions. In contrast, rAAV vectors with oversized genomes release their DNA readily upon thermal treatment. These findings suggested that the spatial arrangement of capsid protein and DNA in AAV virions is genome-size dependent. These results provide a foundation for future improvement of vector assays, design, and applications

    Myeloid cell-derived LL-37 promotes lung cancer growth by activating Wnt/Ī²-catenin signaling

    Get PDF
    Rationale: Antimicrobial peptides, such as cathelicidin LL-37/hCAP-18, are important effectors of the innate immune system with direct antibacterial activity. In addition, LL-37 is involved in the regulation of tumor cell growth. However, the molecular mechanisms underlying the functions of LL-37 in promoting lung cancer are not fully understood. Methods: The expression of LL-37 in the tissues and sera of patients with non-small cell lung cancer was determined through immunohistological, immunofluorescence analysis, and enzyme-linked immunosorbent assay. The animal model of wild-type and Cramp knockout mice was employed to evaluate the tumorigenic effect of LL-37 in non-small cell lung cancer. The mechanism of LL-37 involving in the promotion of lung tumor growth was evaluated via microarray analyses, recombinant protein treatment approaches in vitro, tumor immunohistochemical assays, and intervention studies in vivo. Results: LL-37 produced by myeloid cells was frequently upregulated in primary human lung cancer tissues. Moreover, its expression level correlated with poor clinical outcome. LL-37 activated Wnt/Ī²-catenin signaling by inducing the phosphorylation of protein kinase B and subsequent phosphorylation of glycogen synthase kinase 3Ī² mediated by the toll-like receptor-4 expressed in lung tumor cells. LL-37 treatment of tumor cells also decreased the levels of Axin2. In contrast, it elevated those of an RNA-binding protein (tristetraprolin), which may be involved in the mechanism through which LL-37 induces activation of Wnt/Ī²-catenin. Conclusion: LL-37 may be a critical molecular link between tumor-supportive immune cells and tumors, facilitating the progression of lung cancer

    An in vitro analysis of how lactose modifies the gut microbiota structure and function of adults in a donor-independent manner

    Get PDF
    IntroductionFollowing consumption of milk, lactose, a disaccharide of glucose and galactose, is hydrolyzed and absorbed in the upper gastrointestinal tract. However, hydrolysis and absorption are not always absolute, and some lactose will enter the colon where the gut microbiota is able to hydrolyze lactose and produce metabolic byproducts.MethodsHere, the impact of lactose on the gut microbiota of healthy adults was examined, using a short-term, in vitro strategy where fecal samples harvested from 18 donors were cultured anaerobically with and without lactose. The data were compiled to identify donor-independent responses to lactose treatment.Results and discussionMetagenomic sequencing found that the addition of lactose decreased richness and evenness, while enhancing prevalence of the Ī²-galactosidase gene. Taxonomically, lactose treatment decreased relative abundance of Bacteroidaceae and increased lactic acid bacteria, Lactobacillaceae, Enterococcaceae, and Streptococcaceae, and the probiotic Bifidobacterium. This corresponded with an increased abundance of the lactate utilizers, Veillonellaceae. These structural changes coincided with increased total short-chain fatty acids (SCFAs), specifically acetate, and lactate. These results demonstrated that lactose could mediate the gut microbiota of healthy adults in a donor-independent manner, consistent with other described prebiotics, and provided insight into how dietary milk consumption may promote human health through modifications of the gut microbiome

    Bronchoalveolar Lavage Fluid-Derived Exosomes: A Novel Role Contributing to Lung Cancer Growth

    Get PDF
    Exosomes are nanovesicles produced by a number of different cell types and regarded as important mediators of cell-to-cell communication. Although bronchoalveolar lavage fluid (BALF) has been shown to be involved in the development of tumors, its role in lung cancer (LC) remains unclear. In this article, we systemically studied BALF-derived exosomes in LC. C57BL/6 mice were injected with Lewis lung carcinoma cells and exposed to non-typeable Haemophilus influenza (NTHi) lysate. The analysis showed that the growth of lung tumors in these mice was significantly enhanced compared with the control cohort (only exposure to air). Characterization of the exosomes derived from mouse BALF demonstrated elevated levels of tumor necrosis factor alpha and interleukin-6 in mice exposed to NTHi lysates. Furthermore, abnormal BALF-derived exosomes facilitated the development of LC in vitro and in vivo. The internalization of the BALF-derived exosomes contributed to the development of LC tumors. Collectively, our data demonstrated that exosomes in BALF are a key factor involved in the growth and progression of lung cancer

    Minimal Essential Human Factor VIII Alterations Enhance Secretion and Gene Therapy Efficiency

    Get PDF
    One important limitation for achieving therapeutic expression of human factor VIII (FVIII) in hemophilia A gene therapy is inefficient secretion of the FVIII protein. Substitution of five amino acids in the A1 domain of human FVIII with the corresponding porcine FVIII residues generated a secretion-enhanced human FVIII variant termed B-domain-deleted (BDD)-FVIII-X5 that resulted in 8-fold higher FVIII activity levels in the supernatant of an in vitro cell-based assay system than seen with unmodified human BDD-FVIII. Analysis of purified recombinant BDD-FVIII-X5 and BDD-FVIII revealed similar specific activities for both proteins, indicating that the effect of the X5 alteration is confined to increased FVIII secretion. Intravenous delivery in FVIII-deficient mice of liver-targeted adeno-associated virus (AAV) vectors designed to express BDD-FVIII-X5 or BDD-FVIII achieved substantially higher plasma FVIII activity levels for BDD-FVIII-X5, even when highly efficient codon-optimized F8 nucleotide sequences were employed. A comprehensive immunogenicity assessment using in vitro stimulation assays and various in vivo preclinical models of hemophilia A demonstrated that the BDD-FVIII-X5 variant does not exhibit an increased immunogenicity risk compared to BDD-FVIII. In conclusion, BDD-FVIII-X5 is an effective FVIII variant molecule that can be further developed for use in gene- and protein-based therapeutics for patients with hemophilia A

    Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus

    No full text
    Apigenin is a major dietary flavonoid with many bioactivities, widely distributed in plants. Apigenin reaches the colon region intact and interacts there with the human gut microbiota, however there is little research on how apigenin affects the gut bacteria. This study investigated the effect of pure apigenin on human gut bacteria, at both the single strain and community levels. The effect of apigenin on the single gut bacteria strains Bacteroides galacturonicus, Bifidobacterium catenulatum, Lactobacillus rhamnosus GG, and Enterococcus caccae, was examined by measuring their anaerobic growth profiles. The effect of apigenin on a gut microbiota community was studied by culturing a fecal inoculum under in vitro conditions simulating the human ascending colon. 16S rRNA gene sequencing and GC-MS analysis quantified changes in the community structure. Single molecule RNA sequencing was used to reveal the response of Enterococcus caccae to apigenin. Enterococcus caccae was effectively inhibited by apigenin when cultured alone, however, the genus Enterococcus was enhanced when tested in a community setting. Single molecule RNA sequencing found that Enterococcus caccae responded to apigenin by up-regulating genes involved in DNA repair, stress response, cell wall synthesis, and protein folding. Taken together, these results demonstrate that apigenin affects both the growth and gene expression of Enterococcus caccae

    Analysis of the Ability of Capsaicin to Modulate the Human Gut Microbiota In Vitro

    No full text
    Previous studies on capsaicin, the bioactive compound in chili peppers, have shown that it may have a beneficial effect in vivo when part of a regular diet. These positive health benefits, including an anti-inflammatory potential and protective effects against obesity, are often attributed to the gut microbial community response to capsaicin. However, there is no consensus on the mechanism behind the protective effect of capsaicin. In this study, we used an in vitro model of the human gut microbiota to determine how regular consumption of capsaicin impacts the gut microbiota. Using a combination of NextGen sequencing and metabolomics, we found that regular capsaicin treatment changed the structure of the gut microbial community by increasing diversity and certain SCFA abundances, particularly butanoic acid. Through this study, we determined that the addition of capsaicin to the in vitro cultures of the human gut microbiome resulted in increased diversity of the microbial community and an increase in butanoic acid. These changes may be responsible for the health benefits associated with CAP consumption
    corecore