25 research outputs found

    Quantifying the relationship between human Lyme disease and Borrelia burgdorferi exposure in domestic dogs

    Get PDF
    Lyme disease (LD) is the most common vector-borne disease in the United States. Early confirmatory diagnosis remains a challenge, while the disease can be debilitating if left untreated. Further, the decision to test is complicated by under-reporting, low positive predictive values of testing in non-endemic areas and travel, which together exacerbate the difficulty in identification of newly endemic areas or areas of emerging concern. Spatio-temporal analyses at the national scale are critical to establishing a baseline human LD risk assessment tool that would allow for the detection of changes in these areas. A well-established surrogate for human LD incidence is canine LD seroprevalence, making it a strong candidate covariate for use in such analyses. In this paper, Bayesian statistical methods were used to fit a spatio-temporal spline regression model to estimate the relationship between human LD incidence and canine seroprevalence, treating the latter as an explanatory covariate. A strong non-linear monotonically increasing association was found. That is, this analysis suggests that mean incidence in humans increases with canine seroprevalence until the seroprevalence in dogs reaches approximately 30%. This finding reinforces the use of canines as sentinels for human LD risk, especially with respect to identifying geographic areas of concern for potential human exposure

    Multiple factors interact to produce responses resembling spectrum of human disease in Campylobacter jejuni infected C57BL/6 IL-10-/- mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Campylobacter jejuni </it>infection produces a spectrum of clinical presentations in humans – including asymptomatic carriage, watery diarrhea, and bloody diarrhea – and has been epidemiologically associated with subsequent autoimmune neuropathies. This microorganism is genetically variable and possesses genetic mechanisms that may contribute to variability in nature. However, relationships between genetic variation in the pathogen and variation in disease manifestation in the host are not understood. We took a comparative experimental approach to explore differences among different <it>C. jejuni </it>strains and studied the effect of diet on disease manifestation in an interleukin-10 deficient mouse model.</p> <p>Results</p> <p>In the comparative study, C57BL/6 interleukin-10<sup>-/- </sup>mice were infected with seven genetically distinct <it>C. jejuni </it>strains. Four strains colonized the mice and caused disease; one colonized with no disease; two did not colonize. A DNA:DNA microarray comparison of the strain that colonized mice without disease to <it>C. jejuni </it>11168 that caused disease revealed that putative virulence determinants, including loci encoding surface structures known to be involved in <it>C. jejuni </it>pathogenesis, differed from or were absent in the strain that did not cause disease. In the experimental study, the five colonizing strains were passaged four times in mice. For three strains, serial passage produced increased incidence and degree of pathology and decreased time to develop pathology; disease shifted from watery to bloody diarrhea. Mice kept on an ~6% fat diet or switched from an ~12% fat diet to an ~6% fat diet just before infection with a non-adapted strain also exhibited increased incidence and severity of disease and decreased time to develop disease, although the effects of diet were only statistically significant in one experiment.</p> <p>Conclusion</p> <p><it>C. jejuni </it>strain genetic background and adaptation of the strain to the host by serial passage contribute to differences in disease manifestations of <it>C. jejuni </it>infection in C57BL/6 IL-10<sup>-/- </sup>mice; differences in environmental factors such as diet may also affect disease manifestation. These results in mice reflect the spectrum of clinical presentations of <it>C. jejuni </it>gastroenteritis in humans and contribute to usefulness of the model in studying human disease.</p

    Local and regional temporal trends (2013–2019) of canine Ehrlichia spp. seroprevalence in the USA

    No full text
    Abstract Background In the USA, there are several Ehrlichia spp. of concern including Ehrlichia canis, Ehrlichia ewingii, Ehrlichia chaffeensis, Ehrlichia muris eauclarensis, and “Panola Mountain Ehrlichia”. Of these, E. canis is considered the most clinically relevant for domestic dogs, with infection capable of causing acute, subclinical, and chronic stages of disease. Changes in climate, land use, habitats, and wildlife reservoir populations, and increasing contact between both human and dog populations with natural areas have resulted in the increased risk of vector-borne disease throughout the world. Methods A Bayesian spatio-temporal binomial regression model was applied to serological test results collected from veterinarians throughout the contiguous USA between January 2013 and November 2019. The model was used to quantify both regional and local temporal trends of canine Ehrlichia spp. seroprevalence and identify areas that experienced significant increases in seroprevalence. Results Regionally, increasing seroprevalence occurred within several states throughout the central and southeastern states, including Missouri, Arkansas, Mississippi, Alabama, Virginia, North Carolina, Georgia and Texas. The underlying local trends revealed increasing seroprevalence at a finer scale. Clusters of locally increasing seroprevalence were seen from the western Appalachian region into the southern Midwest, along the Atlantic coast in New England, parts of Florida, Illinois, Wisconsin and Minnesota, and in a couple areas of the Mountain region. Clusters of locally decreasing seroprevalence were seen throughout the USA including New York and the mid-Atlantic states, Texas, the Midwest, and California. Conclusions Canine Ehrlichia spp. seroprevalence is increasing in both endemic and non-endemic areas of the USA. The findings from this study indicate that dogs across a wide area of the USA are at risk of exposure and these results should provide veterinarians and pet owners with the information they need to make informed decisions about prevention of tick exposure

    Local and regional temporal trends (2013–2019) of canine Ehrlichia spp. seroprevalence in the USA

    No full text
    Abstract Background In the USA, there are several Ehrlichia spp. of concern including Ehrlichia canis, Ehrlichia ewingii, Ehrlichia chaffeensis, Ehrlichia muris eauclarensis, and “Panola Mountain Ehrlichia”. Of these, E. canis is considered the most clinically relevant for domestic dogs, with infection capable of causing acute, subclinical, and chronic stages of disease. Changes in climate, land use, habitats, and wildlife reservoir populations, and increasing contact between both human and dog populations with natural areas have resulted in the increased risk of vector-borne disease throughout the world. Methods A Bayesian spatio-temporal binomial regression model was applied to serological test results collected from veterinarians throughout the contiguous USA between January 2013 and November 2019. The model was used to quantify both regional and local temporal trends of canine Ehrlichia spp. seroprevalence and identify areas that experienced significant increases in seroprevalence. Results Regionally, increasing seroprevalence occurred within several states throughout the central and southeastern states, including Missouri, Arkansas, Mississippi, Alabama, Virginia, North Carolina, Georgia and Texas. The underlying local trends revealed increasing seroprevalence at a finer scale. Clusters of locally increasing seroprevalence were seen from the western Appalachian region into the southern Midwest, along the Atlantic coast in New England, parts of Florida, Illinois, Wisconsin and Minnesota, and in a couple areas of the Mountain region. Clusters of locally decreasing seroprevalence were seen throughout the USA including New York and the mid-Atlantic states, Texas, the Midwest, and California. Conclusions Canine Ehrlichia spp. seroprevalence is increasing in both endemic and non-endemic areas of the USA. The findings from this study indicate that dogs across a wide area of the USA are at risk of exposure and these results should provide veterinarians and pet owners with the information they need to make informed decisions about prevention of tick exposure

    A Bayesian spatio-temporal model for forecasting the prevalence of antibodies to Borrelia burgdorferi, causative agent of Lyme disease, in domestic dogs within the contiguous United States.

    No full text
    This paper models the prevalence of antibodies to Borrelia burgdorferi in domestic dogs in the United States using climate, geographic, and societal factors. We then use this model to forecast the prevalence of antibodies to B. burgdorferi in dogs for 2016. The data available for this study consists of 11,937,925 B. burgdorferi serologic test results collected at the county level within the 48 contiguous United States from 2011-2015. Using the serologic data, a baseline B. burgdorferi antibody prevalence map was constructed through the use of spatial smoothing techniques after temporal aggregation; i.e., head-banging and Kriging. In addition, several covariates purported to be associated with B. burgdorferi prevalence were collected on the same spatio-temporal granularity, and include forestation, elevation, water coverage, temperature, relative humidity, precipitation, population density, and median household income. A Bayesian spatio-temporal conditional autoregressive (CAR) model was used to analyze these data, for the purposes of identifying significant risk factors and for constructing disease forecasts. The fidelity of the forecasting technique was assessed using historical data, and a Lyme disease forecast for dogs in 2016 was constructed. The correlation between the county level model and baseline B. burgdorferi antibody prevalence estimates from 2011 to 2015 is 0.894, illustrating that the Bayesian spatio-temporal CAR model provides a good fit to these data. The fidelity of the forecasting technique was assessed in the usual fashion; i.e., the 2011-2014 data was used to forecast the 2015 county level prevalence, with comparisons between observed and predicted being made. The weighted (to acknowledge sample size) correlation between 2015 county level observed prevalence and 2015 forecasted prevalence is 0.978. A forecast for the prevalence of B. burgdorferi antibodies in domestic dogs in 2016 is also provided. The forecast presented from this model can be used to alert veterinarians in areas likely to see above average B. burgdorferi antibody prevalence in dogs in the upcoming year. In addition, because dogs and humans can be exposed to ticks in similar habitats, these data may ultimately prove useful in predicting areas where human Lyme disease risk may emerge

    A Bayesian spatio-temporal model for forecasting Anaplasma species seroprevalence in domestic dogs within the contiguous United States.

    No full text
    This paper forecasts the 2016 canine Anaplasma spp. seroprevalence in the United States from eight climate, geographic and societal factors. The forecast's construction and an assessment of its performance are described. The forecast is based on a spatial-temporal conditional autoregressive model fitted to over 11 million Anaplasma spp. seroprevalence test results for dogs conducted in the 48 contiguous United States during 2011-2015. The forecast uses county-level data on eight predictive factors, including annual temperature, precipitation, relative humidity, county elevation, forestation coverage, surface water coverage, population density and median household income. Non-static factors are extrapolated into the forthcoming year with various statistical methods. The fitted model and factor extrapolations are used to estimate next year's regional prevalence. The correlation between the observed and model-estimated county-by-county Anaplasma spp. seroprevalence for the five-year period 2011-2015 is 0.902, demonstrating reasonable model accuracy. The weighted correlation (accounting for different sample sizes) between 2015 observed and forecasted county-by-county Anaplasma spp. seroprevalence is 0.987, exhibiting that the proposed approach can be used to accurately forecast Anaplasma spp. seroprevalence. The forecast presented herein can a priori alert veterinarians to areas expected to see Anaplasma spp. seroprevalence beyond the accepted endemic range. The proposed methods may prove useful for forecasting other diseases

    Spatial and risk factor analyses of vector-borne pathogens among shelter dogs in the Eastern United States

    No full text
    Abstract Background Vector-borne infections pose significant health risks to humans, domestic animals, and wildlife. Domestic dogs (Canis lupus familiaris) in the United States may be infected with and serve as sentinel hosts for several zoonotic vector-borne pathogens. In this study, we analyzed the geographical distribution, risk factors, and co-infections associated with infection with Ehrlichia spp., Anaplasma spp., Borrelia burgdorferi, and Dirofilaria immitis in shelter dogs in the Eastern United States. Methods From 2016 to 2020, blood samples from 3750 shelter dogs from 19 states were examined with IDEXX SNAP® 4Dx® Plus tests to determine the seroprevalence of infection with tick-borne pathogens and infection with D. immitis. We assessed the impact of factors including age, sex, intact status, breed group, and location on infection using logistic regression. Results The overall seroprevalence of D. immitis was 11.2% (n = 419/3750), the seroprevalence of Anaplasma spp. was 2.4% (n = 90/3750), the seroprevalence of Ehrlichia spp. was 8.0% (n = 299/3750), and the seroprevalence of B. burgdorferi was 8.9% (n = 332/3750). Regional variation in seroprevalence was noted: D. immitis (17.4%, n = 355/2036) and Ehrlichia spp. (10.7%, n = 217/2036) were highest in the Southeast while seroprevalence for B. burgdorferi (19.3%, n = 143/740) and Anaplasma spp. (5.7%, n = 42/740) were highest in the Northeast. Overall, 4.8% (n = 179/3750) of dogs had co-infections, the most common of which were D. immitis/Ehrlichia spp. (1.6%, n = 59/3750), B. burgdorferi/Anaplasma spp. (1.5%, n = 55/3750), and B. burgdorferi/Ehrlichia spp. (1.2%, n = 46/3750). Risk factors significantly influenced infection across the evaluated pathogens were location and breed group. All evaluated risk factors were significant for the seroprevalence of D. immitis antigens. Conclusions Our results demonstrate a regionally variable risk of infection with vector-borne pathogens in shelter dogs throughout the Eastern United States, likely due to varying distributions of vectors. However, as many vectors are undergoing range expansions or other changes in distribution associated with climate and landscape change, continued vector-borne pathogen surveillance is important for maintaining reliable risk assessment. Graphical Abstrac
    corecore