1,165 research outputs found

    Towards optimal explicit time-stepping schemes for the gyrokinetic equations

    Full text link
    The nonlinear gyrokinetic equations describe plasma turbulence in laboratory and astrophysical plasmas. To solve these equations, massively parallel codes have been developed and run on present-day supercomputers. This paper describes measures to improve the efficiency of such computations, thereby making them more realistic. Explicit Runge-Kutta schemes are considered to be well suited for time-stepping. Although the numerical algorithms are often highly optimized, performance can still be improved by a suitable choice of the time-stepping scheme, based on spectral analysis of the underlying operator. Here, an operator splitting technique is introduced to combine first-order Runge-Kutta-Chebychev schemes for the collision term with fourth-order schemes for the remaining terms. In the nonlinear regime, based on the observation of eigenvalue shifts due to the (generalized) E×BE\times B advection term, an accurate and robust estimate for the nonlinear timestep is developed. The presented techniques can reduce simulation times by factors of up to three in realistic cases. This substantial speedup encourages the use of similar timestep optimized explicit schemes not only for the gyrokinetic equation, but also for other applications with comparable properties.Comment: 11 pages, 5 figures, accepted for publication in Computer Physics Communication

    Anomalous Diffusion of particles with inertia in external potentials

    Full text link
    Recently a new type of Kramers-Fokker-Planck Equation has been proposed [R. Friedrich et al. Phys. Rev. Lett. {\bf 96}, 230601 (2006)] describing anomalous diffusion in external potentials. In the present paper the explicit cases of a harmonic potential and a velocity-dependend damping are incorporated. Exact relations for moments for these cases are presented and the asymptotic behaviour for long times is discussed. Interestingly the bounding potential and the additional damping by itself lead to a subdiffussive behaviour, while acting together the particle becomes localized for long times.Comment: 12 pages, 8 figure

    Lagrangian Particle Statistics in Turbulent Flows from a Simple Vortex Model

    Full text link
    The statistics of Lagrangian particles in turbulent flows is considered in the framework of a simple vortex model. Here, the turbulent velocity field is represented by a temporal sequence of Burgers vortices of different circulation, strain, and orientation. Based on suitable assumptions about the vortices' statistical properties, the statistics of the velocity increments is derived. In particular, the origin and nature of small-scale intermittency in this model is investigated both numerically and analytically

    Subproton-scale cascades in solar wind turbulence: driven hybrid-kinetic simulations

    Full text link
    A long-lasting debate in space plasma physics concerns the nature of subproton-scale fluctuations in solar wind (SW) turbulence. Over the past decade, a series of theoretical and observational studies were presented in favor of either kinetic Alfv\'en wave (KAW) or whistler turbulence. Here, we investigate numerically the nature of the subproton-scale turbulent cascade for typical SW parameters by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in two real-space and three velocity-space dimensions. Our analysis suggests that small-scale turbulence in this model is dominated by KAWs at β1\beta\gtrsim1 and by magnetosonic/whistler fluctuations at lower β\beta. The spectral properties of the turbulence appear to be in good agreement with theoretical predictions. A tentative interpretation of this result in terms of relative changes in the damping rates of the different waves is also presented. Overall, the results raise interesting new questions about the properties and variability of subproton-scale turbulence in the SW, including its possible dependence on the plasma β\beta, and call for detailed and extensive parametric explorations of driven kinetic turbulence in three dimensions.Comment: 6 pages, 4 figures, accepted for publication in The Astrophysical Journal Letter

    Understanding nonlinear saturation in zonal-flow-dominated ion temperature gradient turbulence

    Full text link
    We propose a quantitative model of ion temperature gradient driven turbulence in toroidal magnetized plasmas. In this model, the turbulence is regulated by zonal flows, i.e. mode saturation occurs by a zonal-flow-mediated energy cascade ("shearing"), and zonal flow amplitude is controlled by nonlinear decay. Our model is tested in detail against numerical simulations to confirm that both its assumptions and predictions are satisfied. Key results include (1) a sensitivity of the nonlinear zonal flow response to the energy content of the linear instability, (2) a persistence of zonal-flow-regulated saturation at high temperature gradients, (3) a physical explanation of the nonlinear saturation process in terms of secondary and tertiary instabilities, and (4) dependence of heat flux in terms of dimensionless parameters.Comment: Final journal version. Some clarifications and a new Fig.

    Multiscale nature of the dissipation range in gyrokinetic simulations of Alfv\'enic turbulence

    Full text link
    Nonlinear energy transfer and dissipation in Alfv\'en wave turbulence are analyzed in the first gyrokinetic simulation spanning all scales from the tail of the MHD range to the electron gyroradius scale. For typical solar wind parameters at 1 AU, about 30% of the nonlinear energy transfer close to the electron gyroradius scale is mediated by modes in the tail of the MHD cascade. Collisional dissipation occurs across the entire kinetic range kρi1k_\perp\rho_i\gtrsim 1. Both mechanisms thus act on multiple coupled scales, which have to be retained for a comprehensive picture of the dissipation range in Alfv\'enic turbulence.Comment: Made several improvements to figures and text suggested by referee

    A flux-matched gyrokinetic analysis of DIII-D L-mode turbulence

    Get PDF
    Previous nonlinear gyrokinetic simulations of specific DIII-D L-mode cases have been found to significantly underpredict the ion heat transport and associated density and temperature fluctuation levels by up to almost one of order of magnitude in the outer-core domain, i.e., roughly in the last third of the minor radius. Since then, this so-called shortfall issue has been subject to various speculations on possible reasons and furthermore motivation for a number of dedicated comparisons for L-mode plasmas in comparable machines. However, only a rather limited number of simulations and gyrokinetic codes has been applied to the original scenario, thus calling for further dedicated investigations in order to broaden the scientific basis. The present work contributes along these lines by employing another well-established gyrokinetic code in a numerically and physically comprehensive manner. Contrary to the previous studies, only a mild underprediction is observed at the outer radial positions which can furthermore be overcome by varying the ion temperature gradient within the error bars associated with the experimental measurement. The significance and reliability of these simulations are demonstrated by benchmarks, numerical convergence tests, and furthermore by extensive validation studies. The latter involve cross-phase and cross-power spectra analyses of various fluctuating quantities and confirm a high degree of realism. The code discrepancies come as a surprise since the involved software packages had been benchmarked repeatedly and very successfully in the past. Further collaborative effort in identifying the underlying difference is hence required.European Union. Horizon 2020 Research and Innovation Programme (Grant 633053
    corecore