1,165 research outputs found
Towards optimal explicit time-stepping schemes for the gyrokinetic equations
The nonlinear gyrokinetic equations describe plasma turbulence in laboratory
and astrophysical plasmas. To solve these equations, massively parallel codes
have been developed and run on present-day supercomputers. This paper describes
measures to improve the efficiency of such computations, thereby making them
more realistic. Explicit Runge-Kutta schemes are considered to be well suited
for time-stepping. Although the numerical algorithms are often highly
optimized, performance can still be improved by a suitable choice of the
time-stepping scheme, based on spectral analysis of the underlying operator.
Here, an operator splitting technique is introduced to combine first-order
Runge-Kutta-Chebychev schemes for the collision term with fourth-order schemes
for the remaining terms. In the nonlinear regime, based on the observation of
eigenvalue shifts due to the (generalized) advection term, an
accurate and robust estimate for the nonlinear timestep is developed. The
presented techniques can reduce simulation times by factors of up to three in
realistic cases. This substantial speedup encourages the use of similar
timestep optimized explicit schemes not only for the gyrokinetic equation, but
also for other applications with comparable properties.Comment: 11 pages, 5 figures, accepted for publication in Computer Physics
Communication
Anomalous Diffusion of particles with inertia in external potentials
Recently a new type of Kramers-Fokker-Planck Equation has been proposed [R.
Friedrich et al. Phys. Rev. Lett. {\bf 96}, 230601 (2006)] describing anomalous
diffusion in external potentials. In the present paper the explicit cases of a
harmonic potential and a velocity-dependend damping are incorporated. Exact
relations for moments for these cases are presented and the asymptotic
behaviour for long times is discussed. Interestingly the bounding potential and
the additional damping by itself lead to a subdiffussive behaviour, while
acting together the particle becomes localized for long times.Comment: 12 pages, 8 figure
Lagrangian Particle Statistics in Turbulent Flows from a Simple Vortex Model
The statistics of Lagrangian particles in turbulent flows is considered in
the framework of a simple vortex model. Here, the turbulent velocity field is
represented by a temporal sequence of Burgers vortices of different
circulation, strain, and orientation. Based on suitable assumptions about the
vortices' statistical properties, the statistics of the velocity increments is
derived. In particular, the origin and nature of small-scale intermittency in
this model is investigated both numerically and analytically
Subproton-scale cascades in solar wind turbulence: driven hybrid-kinetic simulations
A long-lasting debate in space plasma physics concerns the nature of
subproton-scale fluctuations in solar wind (SW) turbulence. Over the past
decade, a series of theoretical and observational studies were presented in
favor of either kinetic Alfv\'en wave (KAW) or whistler turbulence. Here, we
investigate numerically the nature of the subproton-scale turbulent cascade for
typical SW parameters by means of unprecedented high-resolution simulations of
forced hybrid-kinetic turbulence in two real-space and three velocity-space
dimensions. Our analysis suggests that small-scale turbulence in this model is
dominated by KAWs at and by magnetosonic/whistler fluctuations
at lower . The spectral properties of the turbulence appear to be in
good agreement with theoretical predictions. A tentative interpretation of this
result in terms of relative changes in the damping rates of the different waves
is also presented. Overall, the results raise interesting new questions about
the properties and variability of subproton-scale turbulence in the SW,
including its possible dependence on the plasma , and call for detailed
and extensive parametric explorations of driven kinetic turbulence in three
dimensions.Comment: 6 pages, 4 figures, accepted for publication in The Astrophysical
Journal Letter
Understanding nonlinear saturation in zonal-flow-dominated ion temperature gradient turbulence
We propose a quantitative model of ion temperature gradient driven turbulence
in toroidal magnetized plasmas. In this model, the turbulence is regulated by
zonal flows, i.e. mode saturation occurs by a zonal-flow-mediated energy
cascade ("shearing"), and zonal flow amplitude is controlled by nonlinear
decay. Our model is tested in detail against numerical simulations to confirm
that both its assumptions and predictions are satisfied. Key results include
(1) a sensitivity of the nonlinear zonal flow response to the energy content of
the linear instability, (2) a persistence of zonal-flow-regulated saturation at
high temperature gradients, (3) a physical explanation of the nonlinear
saturation process in terms of secondary and tertiary instabilities, and (4)
dependence of heat flux in terms of dimensionless parameters.Comment: Final journal version. Some clarifications and a new Fig.
Multiscale nature of the dissipation range in gyrokinetic simulations of Alfv\'enic turbulence
Nonlinear energy transfer and dissipation in Alfv\'en wave turbulence are
analyzed in the first gyrokinetic simulation spanning all scales from the tail
of the MHD range to the electron gyroradius scale. For typical solar wind
parameters at 1 AU, about 30% of the nonlinear energy transfer close to the
electron gyroradius scale is mediated by modes in the tail of the MHD cascade.
Collisional dissipation occurs across the entire kinetic range
. Both mechanisms thus act on multiple coupled scales,
which have to be retained for a comprehensive picture of the dissipation range
in Alfv\'enic turbulence.Comment: Made several improvements to figures and text suggested by referee
A flux-matched gyrokinetic analysis of DIII-D L-mode turbulence
Previous nonlinear gyrokinetic simulations of specific DIII-D L-mode cases have been found to significantly underpredict the ion heat transport and associated density and temperature fluctuation levels by up to almost one of order of magnitude in the outer-core domain, i.e., roughly in the last third of the minor radius. Since then, this so-called shortfall issue has been subject to various speculations on possible reasons and furthermore motivation for a number of dedicated comparisons for L-mode plasmas in comparable machines. However, only a rather limited number of simulations and gyrokinetic codes has been applied to the original scenario, thus calling for further dedicated investigations in order to broaden the scientific basis. The present work contributes along these lines by employing another well-established gyrokinetic code in a numerically and physically comprehensive manner. Contrary to the previous studies, only a mild underprediction is observed at the outer radial positions which can furthermore be overcome by varying the ion temperature gradient within the error bars associated with the experimental measurement. The significance and reliability of these simulations are demonstrated by benchmarks, numerical convergence tests, and furthermore by extensive validation studies. The latter involve cross-phase and cross-power spectra analyses of various fluctuating quantities and confirm a high degree of realism. The code discrepancies come as a surprise since the involved software packages had been benchmarked repeatedly and very successfully in the past. Further collaborative effort in identifying the underlying difference is hence required.European Union. Horizon 2020 Research and Innovation Programme (Grant 633053
- …
