1,706 research outputs found

    Contemporary soaring nomenclature

    Get PDF
    Considerable technical progress took place during the past two decades in the field of soaring. In contrast, basic terminology in many languages is lagging seriously. English, one of the leading languages, is no exception. Because of this situation, misunderstandings occur which under some circumstances may result in undesirable consequences, hindering further technical developments as well as soaring activities. Definitions were established and compiled by mid-1973, followed by minor additions (1974 and 1977)

    Towards optimal explicit time-stepping schemes for the gyrokinetic equations

    Full text link
    The nonlinear gyrokinetic equations describe plasma turbulence in laboratory and astrophysical plasmas. To solve these equations, massively parallel codes have been developed and run on present-day supercomputers. This paper describes measures to improve the efficiency of such computations, thereby making them more realistic. Explicit Runge-Kutta schemes are considered to be well suited for time-stepping. Although the numerical algorithms are often highly optimized, performance can still be improved by a suitable choice of the time-stepping scheme, based on spectral analysis of the underlying operator. Here, an operator splitting technique is introduced to combine first-order Runge-Kutta-Chebychev schemes for the collision term with fourth-order schemes for the remaining terms. In the nonlinear regime, based on the observation of eigenvalue shifts due to the (generalized) E×BE\times B advection term, an accurate and robust estimate for the nonlinear timestep is developed. The presented techniques can reduce simulation times by factors of up to three in realistic cases. This substantial speedup encourages the use of similar timestep optimized explicit schemes not only for the gyrokinetic equation, but also for other applications with comparable properties.Comment: 11 pages, 5 figures, accepted for publication in Computer Physics Communication

    Anomalous Diffusion of particles with inertia in external potentials

    Full text link
    Recently a new type of Kramers-Fokker-Planck Equation has been proposed [R. Friedrich et al. Phys. Rev. Lett. {\bf 96}, 230601 (2006)] describing anomalous diffusion in external potentials. In the present paper the explicit cases of a harmonic potential and a velocity-dependend damping are incorporated. Exact relations for moments for these cases are presented and the asymptotic behaviour for long times is discussed. Interestingly the bounding potential and the additional damping by itself lead to a subdiffussive behaviour, while acting together the particle becomes localized for long times.Comment: 12 pages, 8 figure

    Lagrangian Particle Statistics in Turbulent Flows from a Simple Vortex Model

    Full text link
    The statistics of Lagrangian particles in turbulent flows is considered in the framework of a simple vortex model. Here, the turbulent velocity field is represented by a temporal sequence of Burgers vortices of different circulation, strain, and orientation. Based on suitable assumptions about the vortices' statistical properties, the statistics of the velocity increments is derived. In particular, the origin and nature of small-scale intermittency in this model is investigated both numerically and analytically

    Understanding nonlinear saturation in zonal-flow-dominated ion temperature gradient turbulence

    Full text link
    We propose a quantitative model of ion temperature gradient driven turbulence in toroidal magnetized plasmas. In this model, the turbulence is regulated by zonal flows, i.e. mode saturation occurs by a zonal-flow-mediated energy cascade ("shearing"), and zonal flow amplitude is controlled by nonlinear decay. Our model is tested in detail against numerical simulations to confirm that both its assumptions and predictions are satisfied. Key results include (1) a sensitivity of the nonlinear zonal flow response to the energy content of the linear instability, (2) a persistence of zonal-flow-regulated saturation at high temperature gradients, (3) a physical explanation of the nonlinear saturation process in terms of secondary and tertiary instabilities, and (4) dependence of heat flux in terms of dimensionless parameters.Comment: Final journal version. Some clarifications and a new Fig.

    Seismic performance assessment of single-family house

    Get PDF
    Seismic performance of an old masonry building, which is located in Ljubljana, is investigated in this thesis. Firstly, a procedure for determination of the seismic forces and that for an assessment of the bearing capacity associated with the flexural, the sliding shear and the shear failure due to formation of diagonal cracks is presented. In the second part of the thesis, seismic resistance of the building is evaluated with consideration of response of the critical bottom storey. Lateral force method of analysis is used for determination of base shear force, whereas seismic force on each wall is determined on the basis of its stiffness ratio. So determined seismic force on wall was compared with its bearing capacity, which was determined as minimum of bearing capacities corresponded to the three failure modes. Results of analysis have showed that building does not fulfil safety requirements according to Eurocode 6 and 8

    Nonuniversal power-law spectra in turbulent systems

    Full text link
    Turbulence is generally associated with universal power-law spectra in scale ranges without significant drive or damping. Although many examples of turbulent systems do not exhibit such an inertial range, power-law spectra may still be observed. As a simple model for such situations, a modified version of the Kuramoto-Sivashinsky equation is studied. By means of semi-analytical and numerical studies, one finds power laws with nonuniversal exponents in the spectral range for which the ratio of nonlinear and linear time scales is (roughly) scale-independent.Comment: 5 pages, 5 figure
    • …
    corecore