16,075 research outputs found
Decuplet baryon magnetic moments in a QCD-based quark model beyond quenched approximation
We study the decuplet baryon magnetic moments in a QCD-based quark model
beyond quenched approximation. Our approach for unquenching the theory is based
on the heavy baryon perturbation theory in which the axial couplings for baryon
- meson and the meson-meson-photon couplings from the chiral perturbation
theory are used together with the QM moment couplings. It also involves the
introduction of a form factor characterizing the structure of baryons
considered as composite particles. Using the parameters obtained from fitting
the octet baryon magnetic moments, we predict the decuplet baryon magnetic
moments. The magnetic moment is found to be in good agreement with
experiment: is predicted to be compared to the
experimental result of (2.02 0.05) .Comment: 19 pages, 2 figure
Addressing Ethical Issues in Studying Men’s Traumatic Stress
Like many human experiences, traumatic stress is highly gendered. Over the past several decades, a sub-stantial number of empirical studies have explored ethical issues in traumatic stress research. However, these studies have typically reported female samples or failed to account for the influence of gender in their analyses of mixed-sex samples. By extension, ethical issues that are relevant to male participants in traumatic stress research are poorly understood. After briefly exploring why the vulnerabilities of male participants are under-explored in traumatic stress research, this article highlights many ethical issues that are important to address when men participate in traumatic stress research, concluding with some sugges-tions for how these might be taken up to advance the field
Electromagnetic Moments of the Baryon Decuplet
We compute the leading contributions to the magnetic dipole and electric
quadrupole moments of the baryon decuplet in chiral perturbation theory. The
measured value for the magnetic moment of the is used to determine
the local counterterm for the magnetic moments. We compare the chiral
perturbation theory predictions for the magnetic moments of the decuplet with
those of the baryon octet and find reasonable agreement with the predictions of
the large-- limit of QCD. The leading contribution to the quadrupole
moment of the and other members of the decuplet comes from one--loop
graphs. The pionic contribution is shown to be proportional to (and so
will not contribute to the quadrupole moment of nuclei), while the
contribution from kaons has both isovector and isoscalar components. The chiral
logarithmic enhancement of both pion and kaon loops has a coefficient that
vanishes in the limit. The third allowed moment, the magnetic octupole,
is shown to be dominated by a local counterterm with corrections arising at two
loops. We briefly mention the strange counterparts of these moments.Comment: Uses harvmac.tex, 15 pages with 3 PostScript figures packed using
uufiles. UCSD/PTH 93-22, QUSTH-93-05, Duke-TH-93-5
Effective field theory and the quark model
We analyze the connections between the quark model (QM) and the description
of hadrons in the low-momentum limit of heavy-baryon effective field theory in
QCD. By using a three-flavor-index representation for the effective baryon
fields, we show that the ``nonrelativistic'' constituent QM for baryon masses
and moments is completely equivalent through O(m_s) to a parametrization of the
relativistic field theory in a general spin--flavor basis. The flavor and spin
variables can be identified with those of effective valence quarks. Conversely,
the spin-flavor description clarifies the structure and dynamical
interpretation of the chiral expansion in effective field theory, and provides
a direct connection between the field theory and the semirelativistic models
for hadrons used in successful dynamical calculations. This allows dynamical
information to be incorporated directly into the chiral expansion. We find, for
example, that the striking success of the additive QM for baryon magnetic
moments is a consequence of the relative smallness of the non-additive
spin-dependent corrections.Comment: 25 pages, revtex, no figure
Low-speed inducers for cryogenic upper-stage engines
Two-phase, low-speed hydrogen and oxygen inducers driven by electric motors and applicable to the tug engine were designed and constructed. The oxygen inducer was tested in liquid and two-phase oxygen. Its head and flow performance were approximately as designed, and it was able to accelerate to full speed in 3 seconds and produce its design flow and head. The analysis of the two-phase data indicated that the inducer was able to pump with vapor volume fractions in excess of 60 percent. The pump met all of its requirements (duration of runs and number of starts) to demonstrate its mechanical integrity
Hyperon Nonleptonic Decays in Chiral Perturbation Theory Reexamined
We recalculate the leading nonanalytic contributions to the amplitudes for
hyperon nonleptonic decays in chiral perturbation theory. Our results partially
disagree with those calculated before, and include new terms previously omitted
in the P-wave amplitudes. Although these modifications are numerically
significant, they do not change the well-known fact that good agreement with
experiment cannot be simultaneously achieved using one-loop S- and P-wave
amplitudes.Comment: 14 pages, latex, 3 figures, uses axodraw.sty, minor additions, to
appear in Phys. Rev.
BARYON-BARYON INTERACTIONS IN LARGE N_C CHIRAL PERTURBATION THEORY
Interactions of two baryons are considered in large chiral perturbation
theory and compared to the interactions derived from the Skyrme model. Special
attention is given to a torus-like configuration known to be present in the
Skyrme model.Comment: 18 pages, REVTEX, 8 uuencoded PS figures appende
Nucleons Properties at Finite Lattice Spacing in Chiral Perturbation Theory
Properties of the proton and neutron are studied in partially-quenched chiral
perturbation theory at finite lattice spacing. Masses, magnetic moments, the
matrix elements of isovector twist-2 operators and axial-vector currents are
examined at the one-loop level in a double expansion in the light-quark masses
and the lattice spacing. This work will be useful in extrapolating the results
of simulations using Wilson valence and sea quarks, as well as simulations
using Wilson sea quarks and Ginsparg-Wilson valence quarks, to the continuum.Comment: 16 pages LaTe
Study of perturbed periodic systems of differential equations - The Stroboscopic method
Stroboscopic method for solving perturbed periodic systems of differential equation
-meson in nuclear matter
The -nucleon (N) interactions are deduced from the heavy baryon
chiral perturbation theory up to the next-to-leading-order terms. Combining the
relativistic mean-field theory for nucleon system, we have studied the
in-medium properties of -meson. We find that all the elastic scattering
N interactions come from the next-to-leading-order terms. The N
sigma term is found to be about 280130 MeV. The off-shell terms are also
important to the in-medium properties of -meson. On application of the
latest determination of the N scattering length, the ratio of
-meson effective mass to its vacuum value is near , while
the optical potential is about MeV, at the normal nuclear density.Comment: 8 pages, 3 figures, to appear in PRC, many modification
- …