20,016 research outputs found

    An investigation into the archaeological application of carbon stable isotope analysis used to establish crop water availability: solutions and ways forward

    Get PDF
    Carbon stable isotope analysis of charred cereal remains is a relatively new method employed by archaeological scientists to investigate ancient climate and irrigation regimes. The aim of this study was to assess the effect of environmental variables on carbon isotope discrimination (D) in multiple environments to develop the technique and its archaeological application, using crops grown at three experimental stations in Jordan. There are two key results: (1) as expected, there was a strong positive relationship between water availability and D; (2) site, not water input, was the most important factor in determining D. Future work should concentrate on establishing ways of correcting D for the influence of site specific environmental variables and on assessing how well carbon isotope discrimination values are preserved within the archaeological record

    Lidar measurements of thermal structure

    Get PDF
    Rayleigh backscatter observations at 532 nm and 355 nm of relative atmospheric density above Aberystwyth on a total of 93 nights between Dec. 1982 and Feb. 1985 were used to derive the height variation of temperature in the upper stratosphere and mesosphere. Preliminary results for height up to about 25 km were also obtained from observations of Raman backscattering from nitrogen molecules. Comparisons were carried out for stratospheric heights with satellite borne measurements; good agreement was found between equivalent black body temperatures derived from the lidar observations and those obtained from nadir measurements in three channels of the stratosphere sounder units on NOAA satellites; the lidar based atmospheric temperatures have shown general agreement with but a greater degree of structure than the limb sounding measurements obtained using the SAMS experiment on the NOAA-7 satellite. In summer, stratospheric and mesospheric temperatures showed a smooth height variation similar to that of the CIRA model atmosphere. In contrast, the winter data showed a great variability with height, and marked temperature changes both from night to night and within a given night

    Spin-Flavor Structure of Large N Baryons

    Full text link
    The spin-flavor structure of large N baryons is described in the 1/N expansion of QCD using quark operators. The complete set of quark operator identities is obtained, and used to derive an operator reduction rule which simplifies the 1/N expansion. The operator reduction rule is applied to the axial currents, masses, magnetic moments and hyperon non-leptonic decay amplitudes in the SU(3)SU(3) limit, to first order in SU(3)SU(3) breaking, and without assuming SU(3)SU(3) symmetry. The connection between the Skyrme and quark representations is discussed. An explicit formula is given for the quark model operators in terms of the Skyrme model operators to all orders in 1/N1/\N for the two flavor case.Comment: 36 pages, 2 eps figures, uses revte

    Observations of stratospheric aerosols associated with the El Chichon eruption

    Get PDF
    Lidar observations of aerosols were carried out at Aberystwyth between Nov. 1982 and Dec. 1985 using a frequency doubled and frequency tripled Nd/Yag laser and a receiver incorporating a 1 m diameter in a Newtonian telescope configuration. In analyses of the experimental data attention is paid to the magnitude of the coefficient relating extinction and backscatter, the choice being related to the possible presence of aerosols in the upper troposphere and the atmospheric densities employed in the normalisation procedure. The aerosol loading showed marked day to day changes in early months and an overall decay was apparent only after April 1983, this decay being consistent with an e sup -1 time of about 7 months. The general decay was accompanied by a lowering of the layer but layers of aerosols were shown intermittently at heights above the main layer in winter months. The height variations of photon counts corrected for range, or of aerosol backscatter ratio, showed clear signatures of the tropopause. A strong correlation was found between the heights of the tropopause identified from the lidar measurements and from radiosonde-borne temperature measurements. A notable feature of the observations is the appearance of very sharp height gradients of backscatter ratio which seem to be produced by differential advection

    Decuplet baryon magnetic moments in a QCD-based quark model beyond quenched approximation

    Get PDF
    We study the decuplet baryon magnetic moments in a QCD-based quark model beyond quenched approximation. Our approach for unquenching the theory is based on the heavy baryon perturbation theory in which the axial couplings for baryon - meson and the meson-meson-photon couplings from the chiral perturbation theory are used together with the QM moment couplings. It also involves the introduction of a form factor characterizing the structure of baryons considered as composite particles. Using the parameters obtained from fitting the octet baryon magnetic moments, we predict the decuplet baryon magnetic moments. The Ω\Omega^- magnetic moment is found to be in good agreement with experiment: μΩ\mu_{\Omega^-} is predicted to be 1.97μN-1.97 \mu_N compared to the experimental result of (-2.02 ±\pm 0.05) μN\mu_N.Comment: 19 pages, 2 figure

    Bosonic Operator Methods for the Quark Model

    Full text link
    Quark model matrix elements can be computed using bosonic operators and the holomorphic representation for the harmonic oscillator. The technique is illustrated for normal and exotic baryons for an arbitrary number of colors. The computations are much simpler than those using conventional quark model wavefunctions

    Effective field theory and the quark model

    Get PDF
    We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the ``nonrelativistic'' constituent QM for baryon masses and moments is completely equivalent through O(m_s) to a parametrization of the relativistic field theory in a general spin--flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections.Comment: 25 pages, revtex, no figure

    On the structure of large N cancellations in baryon chiral perturbation theory

    Get PDF
    We show how to compute loop graphs in heavy baryon chiral perturbation theory including the full functional dependence on the ratio of the Delta--nucleon mass difference to the pion mass, while at the same time automatically incorporating the 1/N cancellations that follow from the large-N spin-flavor symmetry of baryons in QCD. The one-loop renormalization of the baryon axial vector current is studied to demonstrate the procedure. A new cancellation is identified in the one-loop contribution to the baryon axial vector current. We show that loop corrections to the axial vector currents are exceptionally sensitive to deviations of the ratios of baryon-pion axial couplings from SU(6) values

    1/N_c Expansion of the Heavy Baryon Isgur-Wise Functions

    Get PDF
    The 1/N_c expansion of the heavy baryon Isgur-Wise functions is discussed. Because of the contracted SU(2N_f) light quark spin-flavor symmetry, the universality relations among the Isgur-Wise functions of \Lambda_b to \Lambda_c and \Sigma_b^{(*)} to \Sigma_c^{(*)} are valid up to the order of 1/N_c^2.Comment: 7 pages, latex, no figures, to appear in Phys. Rev.
    corecore