97 research outputs found
Analysis of General Power Counting Rules in Effective Field Theory
We derive the general counting rules for a quantum effective field theory
(EFT) in dimensions. The rules are valid for strongly and weakly
coupled theories, and predict that all kinetic energy terms are canonically
normalized. They determine the energy dependence of scattering cross sections
in the range of validity of the EFT expansion. We show that the size of cross
sections is controlled by the power counting of EFT, not by chiral
counting, even for chiral perturbation theory (PT). The relation between
and is generalized to dimensions. We show that the
naive dimensional analysis counting is related to counting. The
EFT counting rules are applied to PT, low-energy weak interactions,
Standard Model EFT and the non-trivial case of Higgs EFT.Comment: V2: more details and examples added; version published in journal. 17
pages, 4 figures, 2 table
Bosonic Operator Methods for the Quark Model
Quark model matrix elements can be computed using bosonic operators and the
holomorphic representation for the harmonic oscillator. The technique is
illustrated for normal and exotic baryons for an arbitrary number of colors.
The computations are much simpler than those using conventional quark model
wavefunctions
A Lattice Test of 1/N_c Baryon Mass Relations
1/N_c baryon mass relations are compared with lattice simulations of baryon
masses using different values of the light-quark masses, and hence different
values of SU(3) flavor-symmetry breaking. The lattice data clearly display both
the 1/N_c and SU(3) flavor-symmetry breaking hierarchies. The validity of 1/N_c
baryon mass relations derived without assuming approximate SU(3)
flavor-symmetry also can be tested by lattice data at very large values of the
strange quark mass. The 1/N_c expansion constrains the form of discretization
effects; these are suppressed by powers of 1/N_c by taking suitable
combinations of masses. This 1/N_c scaling is explicitly demonstrated in the
present work.Comment: 13 pages, 20 figures; v2 version to be published in PR
Dynamical Polarizabilities of SU(3) Octet of Baryons
We present calculations and an analysis of the spin-independent dipole
electric and magnetic dynamical polarizabilities for the lowest in mass SU(3)
octet of baryons. These extensive calculations are made possible by the recent
implementation of semi-automatized calculations in Chiral Perturbation Theory
which allows evaluating dynamical spin-independent electromagnetic
polarizabilities from Compton scattering up to next-to-the-leading order. Our
results are in good agreement with calculations performed for nucleons found in
the literature. The dependencies for the range of photon energies up to 1 GeV,
covering the majority of the meson photo production channels, are analyzed. The
separate contributions into polarizabilities from the various baryon meson
clouds are studied.Comment: 10 pages, 7 figures, extended analysis of hyperon polarizabilitie
On the structure of large N cancellations in baryon chiral perturbation theory
We show how to compute loop graphs in heavy baryon chiral perturbation theory
including the full functional dependence on the ratio of the Delta--nucleon
mass difference to the pion mass, while at the same time automatically
incorporating the 1/N cancellations that follow from the large-N spin-flavor
symmetry of baryons in QCD. The one-loop renormalization of the baryon axial
vector current is studied to demonstrate the procedure. A new cancellation is
identified in the one-loop contribution to the baryon axial vector current. We
show that loop corrections to the axial vector currents are exceptionally
sensitive to deviations of the ratios of baryon-pion axial couplings from SU(6)
values
Hilbert Series for Flavor Invariants of the Standard Model
The Hilbert series is computed for the lepton flavor invariants of the
Standard Model with three generations including the right-handed neutrino
sector needed to generate light neutrino masses via the see-saw mechanism. We
also compute the Hilbert series of the quark flavor invariants for the case of
four generations.Comment: 6 page
Baryons with Two Heavy Quarks as Solitons
Using the chiral soliton model and heavy quark symmetry we study baryons
containing two heavy quarks. If there exists a stable (under strong
interactions) meson consisting of two heavy quarks and two light ones, then we
find that there always exists a state of this meson bound to a chiral soliton
and to a chiral anti-soliton, corresponding to a two heavy quark baryon and a
baryon containing two heavy anti-quarks and five light quarks, or a
``heptaquark".Comment: 7 pages and 2 postscript figures appended, LaTex, UCI-TR 94-3
One-loop vertex integrals in heavy-particle effective theories
We give a complete analytical computation of three-point one-loop integrals
with one heavy propagator, up to the third tensor rank, for arbitrary values of
external momenta and masses.Comment: 10 pages, Latex, to appear in J. Phys.
Hyperon Nonleptonic Decays in Chiral Perturbation Theory Reexamined
We recalculate the leading nonanalytic contributions to the amplitudes for
hyperon nonleptonic decays in chiral perturbation theory. Our results partially
disagree with those calculated before, and include new terms previously omitted
in the P-wave amplitudes. Although these modifications are numerically
significant, they do not change the well-known fact that good agreement with
experiment cannot be simultaneously achieved using one-loop S- and P-wave
amplitudes.Comment: 14 pages, latex, 3 figures, uses axodraw.sty, minor additions, to
appear in Phys. Rev.
- …