543 research outputs found

    Using Markov Decision Processes with Heterogeneous Queueing Systems to Examine Military MEDEVAC Dispatching Policies

    Get PDF
    major focus of the Military Health System is to provide efficient and timely medical evacuation (MEDEVAC) to battlefield casualties. Medical planners are responsible for developing dispatching policies that dictate how aerial military MEDEVAC units are utilized during major combat operations. The objective of this research is to determine how to optimally dispatch MEDEVAC units in response to 9-line MEDEVAC requests to maximize MEDEVAC system performance. A discounted, infinite horizon Markov decision process (MDP) model is developed to examine the MEDEVAC dispatching problem. The MDP model allows the dispatching authority to accept, reject, or queue incoming requests based on the request\u27s classification (i.e., zone and precedence level) and the state of the MEDEVAC system. Rejected requests are rerouted to be serviced by other, non-medical military organizations in theater. Performance is measured in terms of casualty survivability rather than a response time threshold since survival probability more accurately represents casualty outcomes. A representative planning scenario based on contingency operations in southern Afghanistan is utilized to investigate the differences between the optimal dispatching policy and three practitioner-friendly myopic baseline policies. Two computational experiments, a two-level, five-factor screening design and a subsequent three-level, three-factor full factorial design, are conducted to examine the impact of selected MEDEVAC problem features on the optimal policy and the system level performance measure. Results indicate that dispatching the closest available MEDEVAC unit is not always optimal and that dispatching MEDEVAC units considering the precedence level of requests and the locations of busy MEDEVAC units increases the performance of the MEDEVAC system. These results inform the development and implementation of MEDEVAC tactics, techniques, and procedures by military medical planners. Moreover, an open question exists concerning the best exact solution approach for solving Markov decision problems due to recent advances in performance by commercial linear programming (LP) solvers. An analysis of solution approaches for the MEDEVAC dispatching problem reveals that the policy iteration algorithm substantially outperforms the LP algorithms executed by CPLEX 12.6 in regards to computational effort. This result supports the claim that policy iteration remains the superlative solution algorithm for exactly solving computationally tractable Markov decision problems

    Strategic Location and Dispatch Management of Assets in a Military Medical Evacuation Enterprise

    Get PDF
    This dissertation considers the importance of optimizing deployed military medical evacuation (MEDEVAC) systems and utilizes operations research techniques to develop models that allow military medical planners to analyze different strategies regarding the management of MEDEVAC assets in a deployed environment. For optimization models relating to selected subproblems of the MEDEVAC enterprise, the work herein leverages integer programming, multi-objective optimization, Markov decision processes, approximate dynamic programming, and machine learning, as appropriate, to identify relevant insights for aerial MEDEVAC operations

    Optoelectronic and photovoltaic devices with low-reflectance surfaces

    Get PDF
    Low angle V-grooves are provided in the target surfaces of optoelectronic or photovoltaic devices such as solar cells and photodetectors. The low angle V-grooves increase the efficiency of the devices by promoting total internal reflection of light reflected from the target surface at the interface of the coverglass and the external environment

    Towards an overheating risk tool for building design

    Get PDF
    PurposeThe work set out to design and develop an overheating risk tool using the UKCP09 climate projections that is compatible with building performance simulation software. The aim of the tool is to exploit the Weather Generator and give a reasonably accurate assessment of a building's performance in future climates, without adding significant time, cost or complexity to the design team's work.Methodology/approachBecause simulating every possible future climate is impracticable, the approach adopted was to use principal component analysis to give a statistically rigorous simplification of the climate projections. The perceptions and requirements of potential users were assessed through surveys, interviews and focus groups.FindingsIt is possible to convert a single dynamic simulation output into many hundreds of simulation results at hourly resolution for equally probable climates, giving a population of outcomes for the performance of a specific building in a future climate, thus helping the user choose adaptations that might reduce the risk of overheating. The tool outputs can be delivered as a probabilistic overheating curve and feed into a risk management matrix. Professionals recognized the need to quantify overheating risk, particularly for non‐domestic buildings, and were concerned about the ease of incorporating the UKCP09 projections into this process. The new tool has the potential to meet these concerns.Originality/valueThe paper is the first attempt to link UKCP09 climate projections and building performance simulation software in this way and the work offers the potential for design practitioners to use the tool to quickly assess the risk of overheating in their designs and adapt them accordingly.</jats:sec

    Investigation of anodic and chemical oxides grown on p-type InP with applications to surface passivation for n(+)-p solar cell fabrication

    Get PDF
    Most of the previously reported InP anodic oxides were grown on a n-type InP with applications to fabrication of MISFET structures and were described as a mixture of In2O3 and P2O5 stoichiometric compounds or nonstoichiometric phases which have properties similar to crystalline compounds In(OH)3, InPO4, and In(PO3)3. Details of the compositional change of the anodic oxides grown under different anodization conditions were previously reported. The use of P-rich oxides grown either by anodic or chemical oxidation are investigated for surface passivation of p-type InP and as a protective cap during junction formation by closed-ampoule sulfur diffusion. The investigation is based on but not limited to correlations between PL intensity and X-ray photoelectron spectroscopy (XPS) chemical composition data

    Historical Precision of an Ozone Correction Procedure for AM0 Solar Cell Calibration

    Get PDF
    In an effort to improve the accuracy of the high altitude aircraft method for calibration of high band-gap solar cells, the ozone correction procedure has been revisited. The new procedure adjusts the measured short circuit current, Isc, according to satellite based ozone measurements and a model of the atmospheric ozone profile then extrapolates the measurements to air mass zero, AMO. The purpose of this paper is to assess the precision of the revised procedure by applying it to historical data sets. The average Isc of a silicon cell for a flying season increased 0.5% and the standard deviation improved from 0.5% to 0.3%. The 12 year average Isc of a GaAs cell increased 1% and the standard deviation improved from 0.8% to 0.5%. The slight increase in measured Isc and improvement in standard deviation suggests that the accuracy of the aircraft method may improve from 1% to nearly 0.5%

    Plasma cholesterol esterase level is a determinant for an atherogenic lipoprotein profile in normolipidemic human subjects

    Get PDF
    AbstractPlasma cholesterol level is controlled by various factors. In the present study, high plasma activity of cholesterol esterase was found to correlate with plasma total cholesterol and low density lipoprotein (LDL) cholesterol levels in normolipidemic human subjects. However, the cholesterol esterase is not elevated in plasma of patients with familial hypercholesterolemia. These observations suggest that cholesterol esterase level is not determined by plasma cholesterol level, but elevated cholesterol esterase may be causative in increasing plasma cholesterol and LDL. Additional experiments further demonstrated that cholesterol esterase can convert the larger and less-atherogenic LDL to the smaller and more atherogenic LDL subspecies in vitro. These results suggest that plasma cholesterol esterase contributes to the formation and accumulation of atherogenic lipoproteins, and thus is a major risk factor for premature atherosclerosis in normal human subjects

    Extended Temperature Solar Cell Technology Development

    Get PDF
    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation

    Photodetector Development for the Wheel Abrasion Experiment on the Sojourner Microrover of the Mars Pathfinder Mission

    Get PDF
    On-board the Mars Pathfinder spacecraft, launched in December of 1996, is a small roving vehicle named Sojourner. On Sojourner is an experiment to determine the abrasive characteristics of the Martian surface, called the Wheel Abrasion Experiment (WAE). The experiment works as follows: one of the wheels of the rover has a strip of black anodized aluminum bonded to the tread. The aluminum strip has thin coatings of aluminum, nickel and platinum deposited in patches. There are five (5) patches or samples of each metal, and the patches range in thickness from 200 A to 1000 A. The different metals were chosen for their differing hardness and their environmental stability. As the wheel is spun in the Martian soil, the thin patches of metal are abraded away, exposing the black anodization. The abrasion is monitored by measuring the amount of light reflected off of the samples. A photodetector was developed for this purpose, and that is the subject of this paper
    • 

    corecore