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Abstract

This dissertation considers the importance of optimizing deployed military med-

ical evacuation (MEDEVAC) systems and utilizes operations research techniques to

develop models that allow military medical planners to analyze different strategies

regarding the management of MEDEVAC assets in a deployed environment. For op-

timization models relating to selected subproblems of the MEDEVAC enterprise, the

work herein leverages integer programming, multi-objective optimization, Markov de-

cision processes (MDPs), approximate dynamic programming (ADP), and machine

learning, as appropriate, to identify relevant insights for aerial MEDEVAC operations.

This research is conducted in the form of three related research components: the first

component develops models for optimal MEDEVAC location within an enterprise

of assets, whereas the second and third components seek optimal MEDEVAC dis-

patching policies for a set of established assets via a sequence of models of increasing

operational complexity and corresponding solution methods.

Determining where to locate mobile aeromedical staging facilities (MASFs) as

well as identifying how many aeromedical helicopters to allocate to each MASF,

commonly referred to as the MEDEVAC location-allocation problem, is vital to the

success of a deployed MEDEVAC system. An integer mathematical programming

formulation is developed to determine the location and allocation of MEDEVAC as-

sets over the phases of a military deployment to support operations ranging from

peacekeeping through combat to post-combat resolution. The model seeks to address

the multi-objective problem of maximizing the total expected coverage of demand

as a measure of solution effectiveness, minimizing the maximum number of located

MASFs in any deployment phase as a measure of solution efficiency, and minimizing
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the total number of MASF relocations throughout the deployment as a measure of

solution robustness. Moreover, the model utilizes the ε-constraint Method to assess

and recommend improvements to deployed military MEDEVAC systems designed

to provide large-scale emergency medical response for contingency operations that

range in casualty-inducing intensity over the phases of a deployment. Comparisons

are made between the model’s (multi-phase) optimal solution and the phase-specific

optimal solutions that disregard concerns of transitions between phases for a realis-

tic, synthetically generated medical planning scenario in southern Azerbaijan. The

results highlight the conflicting nature between the objectives and illustrate the trade-

offs between objectives as restrictions applied to the second and third objectives are

respectively tightened or relaxed.

Military medical planners must also consider how MEDEVAC assets will be dis-

patched when preparing for and supporting high-intensity combat operations. The

dispatching authority seeks to dispatch MEDEVAC assets to prioritized requests for

service such that battlefield casualties are effectively and efficiently transported to

nearby medical treatment facilities. A discounted, infinite-horizon MDP model of the

MEDEVAC dispatching problem is developed. Unfortunately, the high dimensionality

and uncountable state space of the MDP model renders classical dynamic program-

ming solution methods intractable. Instead, ADP solution methods are applied to

produce high-quality dispatching policies relative to the currently practiced closest-

available dispatching policy. Two distinct ADP solution techniques are developed,

tested, and compared, both of which utilize an approximate policy iteration (API)

algorithmic framework. The first algorithm uses least-squares temporal differences

(LSTD) learning for policy evaluation, whereas the second algorithm uses neural net-

work (NN) learning. A notional, yet representative planning scenario based on high-

intensity combat operations in southern Azerbaijan is constructed to demonstrate
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the applicability of the MDP model and to compare the efficacies of the proposed

ADP solution techniques. Thirty problem instances are generated via a designed ex-

periment to examine how selected problem features and algorithmic features affect

the quality of solutions attained by the ADP policies. Results show that the re-

spective policies determined by the NN-API and LSTD-API algorithms significantly

outperform the closest-available benchmark policies in 27 (90%) and 24 (80%) of the

problem instances examined. Moreover, the NN-API policies significantly outper-

form the LSTD-API policies in each of the problem instances examined. Compared

to the closest-available policy for the baseline problem instance, the NN-API pol-

icy decreases the average response time of important urgent (i.e., life-threatening)

requests by 39 minutes.

This dissertation also examines the MEDEVAC dispatching, preemption-rerouting,

and redeployment (DPR) problem. A discounted, infinite-horizon MDP model of the

MEDEVAC DPR problem is formulated and solved via an ADP strategy that uti-

lizes a support vector regression value function approximation scheme within an API

framework. The objective is to maximize the expected total discounted reward at-

tained by the system. The applicability of the MDP model is examined via a notional,

representative planning scenario based on high-intensity combat operations in Azer-

baijan. Computational experimentation is performed to determine how selected prob-

lem features and algorithmic features impact the quality of solutions attained by the

ADP-generated DPR policies and to highlight the efficacy of the proposed solution

methodology. The results from the computational experiments indicate the ADP-

generated policies significantly outperform the two benchmark policies considered.

Moreover, the results reveal that the average service time of high-precedence, time

sensitive requests decreases when an ADP policy is adopted during high-intensity con-

flicts. As the rate in which requests enter the system increases, the performance gap
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between the ADP policy and the first benchmark policy (i.e., the currently practiced,

closest-available dispatching policy) increases substantially. Conversely, as the rate in

which requests enter the system decreases, the ADP performance improvement over

both benchmark policies decreases, revealing that the ADP policy provides little-to-

no benefit over a myopic approach (e.g., as utilized in the benchmark policies) when

the intensity of a conflict is low.

In aggregate, these research models, methodologies, and results inform the im-

plementation and modification of current and future MEDEVAC tactics, techniques,

and procedures, as well as the design and purchase of future aerial MEDEVAC assets.
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STRATEGIC LOCATION AND DISPATCH MANAGEMENT OF ASSETS IN A

MILITARY MEDICAL EVACUATION ENTERPRISE

I. Introduction

1.1 Motivation

A major focus of the Military Health System is to evacuate combat casualties in

an effective and efficient manner. Casualties are typically transported from predeter-

mined casualty collection points (CCPs) to medical treatment facilities (MTFs) via

casualty evacuation (CASEVAC), medical evacuation (MEDEVAC), or aeromedical

evacuation (AE). CASEVAC refers to the unregulated transport of casualties to an

MTF via non-medical assets without en route medical care (Department of the Army,

2016). MEDEVAC refers to the United States (US) Army, Marine Corps, Navy, and

Coast Guard transport of casualties to an MTF via standardized medical evacuation

platforms equipped and staffed with medical professionals for en route medical care

(Department of Defense, 2012). AE refers to the US Air Force (USAF) transport of

casualties to an MTF via predesignated tactical platforms equipped and staffed with

medical professionals for en route medical care (Department of Defense, 2012). Casu-

alties transported via CASEVAC may not receive the necessary treatment and/or be

transported to the appropriate MTF. As such, MEDEVAC and AE are the preferred

modes of casualty transport during high intensity combat operations (Department of

Defense, 2012).

Patient movement requirements centers (PMRCs) are responsible for managing

casualty evacuation throughout the entire duration of joint combat operations. To
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ensure visibility of the joint assets available for casualty evacuation, PMRCs typically

operate at the joint level. However, there are many instances wherein combat opera-

tions are conducted independently by each service organization under their respective

chains of command (Department of Defense, 2012). This dissertation examines in-

dependent US Army combat operations and assumes that other service evacuation

platforms (e.g., AE) are unavailable for casualty evacuation. More specifically, this

dissertation focuses on the aerial aspect of MEDEVAC operations (i.e., aeromedical

helicopter operations).

The US military first employed aeromedical helicopters in combat operations dur-

ing the Korean Conflict (Bradley et al., 2017). The ability to travel faster, farther,

and across terrain in remote areas not accessible to other evacuation platforms (e.g.,

ground and sea) quickly made aeromedical helicopters a high visibility asset of the

MEDEVAC system. The unique capabilities (e.g., speed, coverage, and flexibility)

of aeromedical helicopters have greatly contributed to the recent increases in casu-

alty survivability rates. Before aeromedical helicopters were employed, approximately

80% of casualties during World War II survived (Eastridge et al., 2012). This number

increased to 84% during the Vietnam War and ultimately 90% during the continu-

ous decade of US conflicts between 2001-2011 (Eastridge et al., 2012). Aeromedical

helicopters provide the MEDEVAC system the ability to simultaneously treat and

quickly transport combat casualties from CCPs to appropriate MTFs. This leads to

decreased response times and improves the survivability rates of combat casualties.

Prior to engaging in major combat operations, military medical planners seek to

design an effective, efficient, and flexible MEDEVAC system. An effective and effi-

cient MEDEVAC system reduces the chances of combat casualties acquiring long-term

disabilities and increases the probability of survival of combat casualties. Moreover,

an effective and efficient MEDEVAC system improves the esprit de corps of deployed
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military personnel, who understand that quality care will be provided to them quickly

if they are injured in combat. A flexible MEDEVAC system gives medical planners

the ability to rapidly task-organize and relocate MEDEVAC assets (i.e., aeromedical

helicopters) to quickly address tactical changes in combat requirements (Department

of the Army, 2016). Military medical planners must also consider important decisions

such as where to locate aeromedical helicopter staging areas and MTFs; how many

aeromedical helicopters to allocate to each staging area; which MEDEVAC dispatch-

ing policy to utilize; and when, if necessary and/or possible, to relocate, redeploy, or

reroute aeromedical helicopters. These important decisions are vital to the success of

MEDEVAC systems and are the primary foci of this dissertation.

This dissertation considers the importance of optimizing deployed military MEDE-

VAC systems and utilizes operations research techniques to develop models that allow

military medical planners to analyze different strategies regarding the management

of MEDEVAC assets in a deployed environment. For optimization models relating to

selected subproblems of the MEDEVAC enterprise, the work herein leverages integer

programming, multi-objective optimization, Markov decision processes (MDPs), ap-

proximate dynamic programming (ADP), and machine learning, as appropriate, to

identify relevant insights for aerial MEDEVAC operations. Moreover, realistic, but

notional, computational examples are utilized to illustrate the impact and relevance

of the models developed in this dissertation.

1.2 Dissertation Overview

This dissertation is organized as follows, wherein Chapters II-IV correspond to the

three major research components and Chapter V identifies holistic conclusions and

recommendations for the research endeavor. Chapter II examines the multi-phase

MEDEVAC location-allocation problem wherein military medical planners must de-
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cide where to locate mobile aeromedical staging facilities (MASFs) and, implicitly,

co-located MTFs as well as identify how many aeromedical helicopters to allocate to

each located MASF throughout the phases of a deployment. An integer mathemati-

cal programming formulation is constructed to determine the location and allocation

of MEDEVAC assets for each phase of a deployment. Whereas the identification of

an optimal coverage solution for each phase may require a large number of located

MASFs and a significant number of MEDEVAC asset relocations as a force transi-

tions between phases, the model also seeks to minimize both the maximum number

of located MASFs in any deployment phase and the total number of MASF relo-

cations throughout the deployment. More specifically, the model seeks to address

the multi-objective problem of maximizing the total expected coverage of demand

as a measure of solution effectiveness, minimizing the maximum number of located

MASFs in any deployment phase as a measure of solution efficiency, and minimizing

the total number of MASF relocations throughout the deployment as a measure of

solution robustness. An illustration of the model’s applicability is demonstrated via

a realistic, synthetically generated medical planning scenario in southern Azerbaijan.

Chapter III examines the MEDEVAC dispatching problem wherein a dispatching

authority must decide which (if any) MEDEVAC unit to dispatch in response to a

submitted 9-line MEDEVAC request. A discounted, infinite-horizon MDP model of

the MEDEVAC dispatching problem is formulated to maximize the expected total

discounted reward attained by the system. Whereas the MDP model provides an ap-

propriate mathematical framework for solving the MEDEVAC dispatching problem,

classical dynamic programming techniques (e.g., policy iteration or value iteration)

are computationally intractable due to the high dimensionality and uncountable state

space of practical scenarios (i.e., large-scale problem instances). As such, two ADP

strategies are designed, tested, and employed to produce high-quality dispatching
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policies relative to the currently practiced dispatching policy (i.e., closest-available

dispatching policy). The first ADP strategy utilizes least-squares temporal differ-

ences learning within an approximate policy iteration (API) algorithmic framework,

whereas the second strategy leverages neural network learning within an API algo-

rithmic framework. Utilizing features from the MEDEVAC dispatching problem, a

set of basis functions is defined to approximate the value function around the post-

decision state for both ADP strategies. A notional, representative planning scenario

based on high-intensity combat operations in southern Azerbaijan is constructed to

demonstrate the applicability of the MDP model and to examine the efficacy of the

proposed ADP strategies. Moreover, designed computational experiments are con-

ducted to determine how selected problem features and algorithmic features impact

the quality of solutions attained by the ADP-generated dispatching policies.

Chapter IV examines the MEDEVAC dispatching, preemption-rerouting, and re-

deployment (DPR) problem wherein a decision maker seeks a policy that determines

which MEDEVAC units to assign (i.e., dispatch or preempt-and-reroute) to respond

to requests for service and where MEDEVAC units redeploy after finishing a service

request (i.e., successfully transferred casualty care to an MTF’s staff). A discounted,

infinite-horizon MDP model of the MEDEVAC DPR problem is formulated and solved

via an ADP strategy that utilizes a support vector regression value function approx-

imation scheme within an API framework. The objective is to generate high-quality

policies that dispatch, preempt-and-reroute, and redeploy MEDEVAC units in a way

that improves upon the currently practiced closest-available dispatching policy for

large-scale, highly kinetic, and intense military conflicts. The applicability of the

MDP model and the efficacy of the ADP strategy are illustrated via a notional, repre-

sentative planning scenario based on high-intensity combat operations in Azerbaijan.

Moreover, computational experimentation is performed to determine how selected
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problem features and algorithmic features impact the quality of solutions attained by

the ADP-generated DPR policies.

Chapter V summarizes the contributions of this dissertation. The assumptions,

limitations, and shortcomings of the respective models are identified and discussed,

with an emphasis on how they can be mitigated in future extensions to the research

examined herein.
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II. Robust, Multi-Objective Optimization for the Military
Medical Evacuation Location-Allocation Problem

2.1 Introduction

Aerial military medical evacuation (MEDEVAC) is a critical component of the

Military Health System and has helped ensure the delivery of healthcare across the

continuum of combat operations since its first appearance in the Korean War (Bradley

et al., 2017). MEDEVAC involves the rapid transport of combat casualties from a

predetermined casualty collection point (CCP) to a medical treatment facility (MTF)

via medically equipped platforms staffed with medical personnel for en route medi-

cal care. Casualty evacuation (CASEVAC) is an alternative means for transporting

combat casualties from a CCP to an MTF; however, CASEVAC does not utilize stan-

dardized medical platforms and does not have the capability to provide vital en route

medical care to the casualties being transported. As such, MEDEVAC serves as the

primary link between levels of medical care in combat operations (Department of the

Army, 2016).

According to Kotwal et al. (2016), 21,089 United States (US) military casualties

occurred in Afghanistan between September 11, 2001 and March 31, 2014, of which

1,350 were killed in action (KIA). The military casualties that were KIA include those

that were killed immediately and those that were injured and died before reaching

an MTF. Although significantly fewer casualties were KIA during this time period

than during previous wars (e.g., 152,359 in World War II and 38,281 in Vietnam),

the US military can still improve its systematic approach for evacuating and treating

combat casualties. The time between injury and treatment dictates the effectiveness

of a medical evacuation system (Kotwal et al., 2016; Aringhieri et al., 2017; Bélanger

et al., 2019). The widely stated “golden-hour” concept for military MEDEVAC refers
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to the one hour time window during which medical intervention after sustaining crit-

ical injury is more likely to be lifesaving. This concept influenced the US Secretary of

Defense to institute a policy in 2009 mandating that combat casualties receive medical

care within one hour from the initial time of injury (Bradley et al., 2017). This policy,

along with the long distances and rugged terrains often encountered in deployed envi-

ronments (which are unfavorable conditions for ground evacuation platforms) has led

to an increase in US military reliance on aerial MEDEVAC for evacuating casualties

during combat operations (De Lorenzo, 2003; Clarke and Davis, 2012; Kotwal et al.,

2016). For example, over 90% of the 21,089 US military casualties that occurred in

Afghanistan between September 11, 2001 and March 31, 2014 were transported via

aerial MEDEVAC (Kotwal et al., 2016). Since the majority of military MEDEVAC

operations are conducted utilizing aerial MEDEVAC platforms (i.e., aeromedical he-

licopters), this research focuses solely on the aerial aspect of military MEDEVAC

operations.

Military medical planners seek to design effective, efficient, and flexible MEDE-

VAC systems prior to engaging in combat operations. An effective and efficient

MEDEVAC system increases the survivability of combat casualties, reduces the chances

of long-term disabilities, and enhances the morale of deployed military personnel by

demonstrating that rapid and quality medical care is available upon request. More-

over, a flexible MEDEVAC system allows military medical planners to rapidly task-

organize and relocate MEDEVAC assets (i.e., mobile aeromedical staging facilities

(MASFs) and aeromedical helicopters) to address tactical changes in battlefield re-

quirements (Department of the Army, 2016). Determining where to locate MASFs

and, implicitly, co-located MTFs as well as identifying how many aeromedical heli-

copters to allocate to each located MASF, commonly referred to as the MEDEVAC

location-allocation problem, is vital to the success of a deployed MEDEVAC system
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and is the primary focus of this research. The MEDEVAC location-allocation problem

seeks to maximize the effectiveness, efficiency, and robustness of a MEDEVAC system

subject to resource, force projection (i.e., the ability to mobilize, deploy, and rede-

ploy military forces), and logistical constraints. Despite the strategic and long-term

nature of combat operations, aeromedical helicopters can be redistributed among the

possible MASF locations, particularly as the level of conflict intensity changes, which

typically corresponds to changes in the number and location of casualty cluster cen-

ters (CCCs). Within this research, we consider the MEDEVAC location-allocation

problem over deployment phases, wherein each deployment phase corresponds to a

different level of conflict intensity that induces a different set of CCCs.

Whereas the identification of an optimal coverage solution for each phase may

require a large number of located MASFs and a significant number of MEDEVAC

asset relocations as a force transitions between phases, we also seek to minimize both

the maximum number of located MASFs in any deployment phase and the total

number of MASF relocations throughout the deployment. We develop an integer

mathematical programming formulation to determine the location and allocation of

MEDEVAC assets for each phase of a deployment.

A key feature of this research is the manner in which uncertainty is taken into con-

sideration. Unlike other MEDEVAC location-allocation models (e.g., see Zeto et al.

(2006); Bastian (2010); Grannan et al. (2015), and Lejeune and Margot (2018)),

we explicitly account for variations in demand and resources over time via a multi-

phase model. We determine model robustness by examining the total number of

MASF relocations throughout the deployment. More specifically, we consider a

location-allocation strategy to be more robust if the total number of MASF relo-

cations throughout the deployment is low, where a maximally robust solution would

prevent the relocation of any located MASF throughout the entire deployment.
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Herein, our model seeks to address the multi-objective problem of maximizing the

total expected coverage of demand as a measure of solution effectiveness, minimizing

the maximum number of located MASFs in any deployment phase as a measure of

solution efficiency, and minimizing the total number of MASF relocations throughout

the deployment as a measure of solution robustness. We assume that each located

MASF is co-located with a medical treatment facility that has sufficient resources and

capacity to handle all incoming demand. The corresponding location and relocation

decisions are subject to resource, force projection, and logistical constraints.

This research makes two contributions. First, it formulates a representative math-

ematical programming formulation and identifies an accompanying solution methodol-

ogy to assess and recommend improvements to deployed military MEDEVAC systems

designed to provide large-scale emergency medical response for contingency operations

that range in casualty-inducing intensity over the phases of a deployment. Second, the

research illustrates the application of the model for a realistic, synthetically generated

medical planning scenario in southern Azerbaijan. Comparisons are made between

the model’s (multi-phase) optimal solution and the phase-specific optimal solutions

that disregard concerns of solution robustness.

The remainder of this chapter is organized as follows. Section 2.2 reviews the rele-

vant research literature related to MEDEVAC location-allocation problem and multi-

objective optimization, respectively. Section 2.3 presents the modeling assumptions,

mathematical programming formulation, and solution method to determine optimal

locations and allocations of MEDEVAC assets. Section 2.4 examines an application

of the model based on a notional planning scenario, and Section 2.5 concludes the

analysis and proposes areas for future research.
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2.2 Literature Review

Rigorous, quantitative research concerning both civilian and military emergency

medical services (EMS) response systems began in the late 1960s. The primary foci

of this research thread include determining where to locate servers (Toregas et al.,

1971; Church and ReVelle, 1974; Daskin and Stern, 1981), deciding how many servers

to allocate at each location (Hall, 1972; Berlin and Liebman, 1974; Baker et al.,

1989), recognizing whether and when server relocation is necessary (Chaiken and

Larson, 1972; Kolesar and Walker, 1974; Berman, 1981), developing server dispatch

policies (Keneally et al., 2016; Rettke et al., 2016; Jenkins et al., 2018; Robbins et al.,

2018; Jenkins et al., 2019), and identifying which performance measure to utilize for

casualty survivability rates (Erkut et al., 2008; McLay and Mayorga, 2010; Knight

et al., 2012). Another important feature of EMS response systems is the location of

hospitals. Most research concerning civilian EMS response systems assume hospital

locations are given as fixed. However, this assumption is typically not valid for

military EMS response system research since some military planning contexts do not

have pre-existing medical treatment facilities (MTFs) in the area of operations. A

comprehensive literature review of the current challenges impacting EMS response

systems is given by Aringhieri et al. (2017). With regard to a military medical

evacuation (MEDEVAC) system planning context, medical planners are responsible

for determining where to best place MTF locations and mobile aeromedical staging

facilities (MASFs), as well as deciding how many aeromedical helicopters to allocate

to each located MASF over the phases of a deployment.

Numerous researchers have studied the MEDEVAC location-allocation problem,

which attempts to maximize system performance via the layout of MEDEVAC as-

sets (i.e., MASFs and aeromedical helicopters) subject to resource, force projection,

and logistical constraints. Zeto et al. (2006) develop a bi-criteria goal programming
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model that seeks to maximize system-wide demand coverage and minimize spare ca-

pacities of aeromedical helicopters in the Afghanistan theater. The authors utilize a

multivariate hierarchical cluster analysis to characterize demand and estimate model

parameters via a Monte Carlo simulation. Their model allocates the minimum number

of aeromedical helicopters required to maximize the probability of meeting demand.

Bastian (2010) proposes a robust, multi-criteria modeling approach to determine the

optimal emplacement of MEDEVAC assets. The author’s model takes into account

the stochastic nature of casualty locations and three separate optimization goals:

maximizing the aggregate expected demand coverage, minimizing spare capacities of

aeromedical helicopters, and minimizing the maximum MTF site total vulnerabil-

ity to enemy attack. Grannan et al. (2015) develop a binary linear programming

(BLP) model with an objective of maximizing the proportion of high-priority (i.e.,

urgent) casualties serviced within a predetermined response time threshold (RTT).

The BLP model optimally locates two types of military MEDEVAC air assets (i.e.,

HH-60M MEDEVAC and HH-60G Pave Hawk) and assigns these assets to casualty

locations utilizing a dispatch preference list while balancing the workload among each

asset type. Coverage thresholds for low-priority (i.e., routine) casualties are incor-

porated into the BLP model to encourage prompt service for all casualties. Lejeune

and Margot (2018) develop a mixed integer nonlinear programming (MINLP) model

to determine where to locate MTFs and aeromedical helicopters, how to dispatch

aeromedical helicopters to the point-of-injury (POI), and to which MTF to route

each MEDEVAC request for patient delivery. The objective of the model is to in-

crease the probability of survival by providing timely evacuation and critical care

to urgent battlefield casualties. The model measures system performance via the

expected number of casualties transported to an MTF within one hour.

An important aspect of this research is how we account for multiple conflicting
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objectives. Optimization problems seek to minimize (or maximize) one or more ob-

jectives that can be subject to a set of constraints or bounds. A single-objective

optimization problem considers one objective function, whereas a multi-objective op-

timization problem considers two or more objective functions. A single-objective

optimization problem often does not adequately represent problems being studied

today. More often, there exist several conflicting objectives that must be considered

simultaneously. Moreover, multi-objective optimization problems typically do not

have a single optimal solution but rather afford a set of alternative solutions that

manifest trade-offs, called Pareto optimal solutions (i.e., non-dominated solutions).

A non-dominated solution is one that cannot improve any objective function value

without degrading another. Multi-objective optimization is, therefore, concerned with

two equally important tasks: the generation of Pareto optimal solutions and the se-

lection of a single most preferred Pareto optimal solution (Deb, 2014). The latter task

relies on the intuition of the decision maker and their ability to express preferences

throughout the optimization cycle.

The methods utilized to solve multi-objective optimization problems belong to

one of three major categories: a priori articulation of preferences, a posteriori artic-

ulation of preferences, and no articulation of preferences (Marler and Arora, 2004).

Each method considers the expertise of the decision maker in a different manner.

Methods with a priori articulation of preferences (e.g., weighted sum, ε-constraint,

and lexicographic) require the decision maker to define the relative importance of

the objectives prior to running an optimization algorithm. However, in some in-

stances, it is difficult for decision makers to express preferences between objectives

prior to conducting analysis. Methods with a posteriori articulation of preferences

(e.g., physical programming, normal boundary intersection, and normal constraint)

take this concern into consideration and allow the decision maker to choose a solu-
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tion from the Pareto optimal set. Methods with no articulation of preferences (e.g.,

exponential sum, Nash arbitration and objective product, and Rao’s Method) do not

require the decision maker to distinguish the relative importance of objectives. Most

of the methods with no articulation of preferences are simplifications of methods

with a prior articulation of preferences. We refer the interested reader to Marler and

Arora (2004), Deb (2014), and Gutjahr and Nolz (2016) for an extensive summary of

multi-objective optimization concepts, methods, and applications.

With regard to multi-objective location-allocation problems, the most widely used

methods consider scalarization techniques (e.g., Weighted Sum Method, ε-constraint

Method, and Hybrid Method) (Ehrgott, 2013). These methods fall under the a pri-

ori articulation of preferences category and require the decision maker to define the

relative importance of each objective prior to running an optimization algorithm.

The Weighted Sum Method is a classical scalarization technique that converts multi-

objective problems into scalar problems by constructing a weighted sum of all the

objectives (Bérubé et al., 2009). The advantage of the Weighted Sum Method is

its simplicity, which has made it popular amongst many decision makers (Marler

and Arora, 2010). However, one of the disadvantages of the Weighted Sum Method

is its inability to find certain Pareto optimal solutions in the case of a nonconvex

objective space, which has caused it to be utilized less frequently (Current et al.,

1985; Zhang and Jiang, 2014). The ε-constraint Method overcomes the convexity

issues of the Weighted Sum Method by iteratively optimizing one objective after con-

verting the remaining objectives into constraints, for which the right-hand sides are

respectively, parametrically changed and the formulation iteratively resolved to iden-

tify a set of Pareto optimal solutions. Given proper increments of ε, Chankong and

Haimes (2008) show that the ε-constraint Method is guaranteed to find the entire set

of Pareto-optimal solutions for a general multi-objective problem. Moreover, Cohon
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(2013) shows that an optimal solution identified via the ε-constraint Method is guar-

anteed to be Pareto optimal if the constraints representing the objectives are binding

and the solution is feasible. The ε-constraint Method is more often utilized when

compared against other scalarization techniques (e.g., the Weighted Sum Method)

within recent research concerning multi-objective location-allocation problems (e.g.,

see Chanta et al. (2014); Rath and Gutjahr (2014); Carrizosa et al. (2015); Kho-

daparasti et al. (2016), and Paul et al. (2017)). As such, we embrace the use of

the ε-constraint Method herein for its simplicity and ability to address nonconvexity

concerns.

2.3 Model Formulation & Solution Methodology

This section sets forth a mathematical program for the military medical evacua-

tion (MEDEVAC) location-allocation problem. After reviewing the general modeling

approach, assumptions, and the formal mathematical program, it presents our solu-

tion methodology for determining Pareto optimal solutions for medical planners to

consider.

2.3.1 Model Formulation

The model focuses on the MEDEVAC location-allocation problem over the phases

of a deployment. More specifically, the model herein seeks to locate mobile aeromed-

ical staging facilities (MASFs) and allocate aeromedical helicopters in a manner that

simultaneously maximizes the total expected coverage of demand, minimizes the max-

imum number of located MASFs in any deployment phase, and minimizes the the total

number of MASF relocations throughout the deployment.

Prior to presenting the mathematical programming formulation, it is important to

discuss the associated assumptions. The number of MASFs, aeromedical helicopters,
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and deployment phases being modeled are each limited in number. Each located

MASF is assumed to be co-located with a medical treatment facility that has sufficient

resources and capacity to handle all incoming demand. These assumptions reduce the

complexity of the problem and allow the identification of optimal solutions in a timely

manner. Moreover, to develop a representative planning scenario, military planning

guidelines for combat operations identify different sets of casualty cluster centers

(CCCs) for each phase of a deployment that correspond to locations at which enemy

attacks are likely to occur.

To formulate the model, consider the definitions for the following sets, parameters,

and decision variables:

Sets

• Let Ψ = {1, 2, . . . , |Ψ|} denote the set of deployment phases with index ψ ∈ Ψ

• Let Iψ denote the set of casualty cluster centers in deployment phase ψ ∈ Ψ

with index i ∈ Iψ

• Let J denote the set of potential MASF locations with index j ∈ J

Parameters

• Let m denote the maximum number of MASFs that can be located in each

deployment phase

• Let h denote the total number of aeromedical helicopters to be allocated in each

deployment phase

• Let d̄ denote the furthest distance that each aeromedical helicopter can travel

per MEDEVAC mission

• Let aiψ denote the total demand at CCC i ∈ Iψ in deployment phase ψ ∈ Ψ
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• Let dij denote the distance from CCC i to MASF j

• Let Niψ = {j|j ∈ J, dij ≤ d̄} denote the set of available MASF locations that

are within coverage distance from CCC i ∈ Iψ in deployment phase ψ ∈ Ψ

• Let wkψ denote the probability that the kth aeromedical helicopter is available

and the 1st through (k − 1)th helicopters are busy in deployment phase ψ ∈ Ψ

Decision Variables

• Let ljψ = 1 if a MASF is located at site j ∈ J in deployment phase ψ ∈ Ψ, 0

otherwise

• Let xjψ denote the total number of aeromedical helicopters allocated to a MASF

at location j ∈ J in deployment phase ψ ∈ Ψ

• Let yikψ = 1 if CCC i ∈ Iψ is covered by at least k aeromedical helicopters in

deployment phase ψ ∈ Ψ, 0 otherwise

• Let lmax, an intermediate decision variable, denote the maximum number of

located MASFs at any point throughout the deployment

• Let rjψ, an intermediate decision variable, be equal to 1 if a MASF is located at

site j ∈ J in deployment phase ψ ∈ Ψ but not in deployment phase ψ + 1 ∈ Ψ,

0 otherwise

Given this framework, we propose the following formulation of the MEDEVAC location-

allocation problem, denoted as Problem P1:

P1: max
(
f1(y), f2(lmax), f3(r)

)
(1)

subject to f1(y) =
∑
ψ∈Ψ

∑
i∈Iψ

h∑
k=1

aiψwkψyikψ, (2)
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f2(lmax) = −lmax, (3)

f3(r) = −
∑
ψ∈Ψ

∑
j∈J

rjψ, (4)

∑
j∈J

ljψ ≤ m, ∀ ψ ∈ Ψ, (5)

ljψ ≤ xjψ, ∀ j ∈ J, ∀ ψ ∈ Ψ, (6)∑
j∈Jψ

xjψ = h, ∀ ψ ∈ Ψ, (7)

xjψ ≤ hljψ, ∀ j ∈ J, ∀ ψ ∈ Ψ, (8)

h∑
k=1

yikψ ≤
∑
j∈Niψ

xjψ, ∀ i ∈ Iψ, ∀ ψ ∈ Ψ, (9)

∑
j∈J

ljψ ≤ lmax, ∀ ψ ∈ Ψ, (10)

ljψ − lj,ψ+1 ≤ rjψ, ∀ j ∈ J, ∀ ψ ∈ Ψ \ {|Ψ|}, (11)

rjψ ∈ {0, 1}, ∀ ψ ∈ Ψ \ {|Ψ|}, (12)

xjψ ∈ Z+, ∀ j ∈ J, ∀ ψ ∈ Ψ, (13)

ljψ ∈ {0, 1}, ∀ j ∈ J, ∀ ψ ∈ Ψ, (14)

yikψ ∈ {0, 1}, ∀ i ∈ Iψ, for k = 1, 2, . . . , h, ∀ ψ ∈ Ψ. (15)

The objective function (1) optimizes a combination of three objectives: (2) max-

imizing the total expected demand covered, (3) minimizing the maximum number of

located MASFs in any deployment phase, and (4) minimizing the the total number of

MASF relocations throughout the deployment. Constraint (5) ensures that no more

than the maximum number of available MASFs m are located in each deployment

phase ψ. Constraint (6) ensures that the MASFs located in phase ψ have at least

one aeromedical helicopter allocated to them in phase ψ, thereby preventing the em-

placement of a MASF without supporting helicopters. Constraint (7) ensures that all
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available aeromedical helicopters h are allocated across the located MASFs in phase

ψ. The logical restriction that an aeromedical helicopter cannot be allocated to a

non-located MASF is handled by Constraint (8). Constraint (9) counts the num-

ber of aeromedical helicopters that cover each CCC i in each deployment phase ψ.

Constraint (10) determines the maximum number of located MASFs in any deploy-

ment phase. Constraint (11) determines from where MASFs are relocated between

deployment phases ψ and ψ + 1. Constraints (12)-(15) represent non-negativity and

integrality constraints.

This model belongs to the family of probabilistic models for ambulance location

that, in contrast to deterministic models, account for the fact that aeromedical heli-

copters may not be able to support an incoming request for service because they are

busy servicing other requests. The probability that a randomly selected aeromedical

helicopter is busy in deployment phase ψ, which we denote as pψ, depends on (a) the

average number of MEDEVAC requests per hour in phase ψ, λψ; (b) the average ser-

vice time per MEDEVAC mission, 1
µ
; and (c) the number of aeromedical helicopters

deployed in phase ψ, h. We define pψ with the following equation

pψ =
λψ
hµ
.

This definition of pψ assumes that each aeromedical helicopter operates independently.

One approximate way to relax this assumption is to utilize correction factors in an

embedded hypercube model (Batta et al., 1989; Chanta et al., 2014). The hypercube

model was first developed by Larson (1974) to allow for dependencies between servers

and has two underlying assumptions: (a) requests for service arrive according to a

Poisson process; and (b) if a request for service is submitted to the system and all

servers are busy, then the request will enter at the end of a queue and will be served

in a first-in-first-out manner. We modify the correction factors given in Batta et al.
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(1989) and Chanta et al. (2014) to account for the differences in λψ, µ, and h over the

phases of a deployment. We incorporate the modified correction factors into our model

to approximate the dependencies among the aeromedical helicopters deployed in each

deployment phase. As such, the probability that the kth aeromedical helicopter is

available and the 1st through (k − 1)th helicopters are busy in deployment phase

ψ ∈ Ψ is computed as follows

wkψ = Q(h, pψ, k − 1)(1− pψ)(pk−1
ψ ), for k = 1, 2, . . . , h, (16)

where

Q(h, pψ, j) =

[∑h−1
k=j

[( (h−j−1)!(h−k)
(k−j)!

)(
hk

M !

)
pk−jψ

]]
[(

(1− pψ)
∑h−1

i=0 (h
i

i! )piψ
)

+
(hhphψ

h!

)] , for j = 0, 1, . . . , h− 1,

is the correction factor.

A virtue of this model is that, in the objective function, the weight of the variable

yikψ is always less than the weight of the variable yi,k+1,ψ because of the definition

of wkψ given by Equation (16). By definition, wkψ is the probability that the kth

aeromedical helicopter is available and the first through (k − 1)th helicopters are

busy in deployment phase ψ ∈ Ψ such that wkψ is greater than wk+1,ψ. As such, the

variables enter the solution in the correct order, and the formulation avoids the need

to add ordering constraints of the type yikψ ≥ yi,k+1,ψ.

2.3.2 Solution Methodology

Rather than solve Problem P1 directly to identify the set of Pareto optimal solu-

tions (e.g., via the Weighted Sum Method), we utilize the ε-constraint Method. We
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first reformulate Problem P1 to Problem P2 as follows:

P2: max
∑
ψ∈Ψ

∑
i∈Iψ

h∑
k=1

aiψwkψyikψ, (17)

subject to Constraints (5)-(15),

lmax ≤ ε2, (18)∑
ψ∈Ψ

∑
j∈J

rjψ ≤ ε3. (19)

In this formulation, objective (17) replaces objective (1) from P1, strictly seeking

to maximize the total expected demand covered. Constraint (18) bounds the second

objective, the minimization of the maximum number of located MASFs in any deploy-

ment phase, to be no more than ε2, an allowed maximum number of located MASFs

in any deployment phase. Moreover, Constraint (19) bounds the third objective, the

minimization of the total number of MASF relocations throughout the deployment,

to be no more than ε3, an allowed total number of MASF relocations throughout the

deployment.

2.4 Testing, Results, & Analysis

In this section, we develop and utilize a representative military medical evacua-

tion (MEDEVAC) planning scenario to demonstrate the applicability of our integer

programming formulation to the military medical planning community. We design

and conduct computational experiments to examine how different parameter settings

for P2 (i.e., ε2, ε3, and h) impact the total expected demand covered. Moreover,

we examine a baseline scenario and compare the model’s (multi-phase) optimal solu-

tion against the phase-specific optimal solutions that disregard robustness concerns.

Experiments and analysis are conducted using a dual Intel Xeon E5-2650v2 worksta-

tion having 128 GB of RAM and invoking the commercial solver CPLEX (Version
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12.8) within the GAMS modeling environment (Version 24.8.5) to identify optimal

solutions to instances of Problem P2. All solutions reported are optimal (i.e., both

the relative and absolute optimality gaps are set equal to zero), and each instance is

solved to optimality in less than 10 seconds of computational time.

2.4.1 Representative Scenario Development for Testing

Military deployments are typically categorized into six distinct phases: Shape

(i.e., Phase 0), Deter (i.e., Phase 1), Seize the Initiative (i.e., Phase 2), Dominate

(i.e., Phase 3), Stabilize (i.e., Phase 4), and Enable Civil Authority (i.e., Phase 5)

(Department of Defense, 2017). Casualty events resulting in MEDEVAC requests

are expected to occur in Phases 1, 2, and 3 with the majority of requests occur-

ring in Phases 2 and 3. Deciding where to locate and allocate MEDEVAC assets

(i.e., MASFs and aeromedical helicopters) are important decisions and should be

considered throughout the phases of a deployment. Since the majority of MEDE-

VAC requests typically occur in Phases 2 and 3, we subdivide these phases within

our scenario to Phases 2A, 2B, 3A, and 3B to provide decision makers with addi-

tional opportunities to adjust MEDEVAC assets location-allocation decisions. Our

representative scenario considers five deployment phases (i.e., Phases 1, 2A, 2B, 3A,

and 3B) where, for each deployment phase, the decision maker must decide where to

locate and allocate MEDEVAC assets among the set of potential MASF locations.

We develop a notional, representative military MEDEVAC planning scenario in

which the United States (US) military is performing high-intensity combat opera-

tions in support of the government of Azerbaijan. We utilize the Georgia, Armenia,

Azerbaijan, Turkey (GAAT) scenario from the US Army’s Training and Doctrine

Command (TRADOC) as part of the basis for our representative military MEDE-

VAC planning context (Burland, 2008). TRADOC’s GAAT scenario is an unclassified
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exercise that depicts a conflict between Azerbaijan and a fictional nation to the south

named Ahuristan, and it requires participants to plan for threats from conventional

forces, insurgents, and civil unrest.

Our planning scenario considers five distinct deployment phases and 29 potential

mobile aeromedical staging facility (MASF) locations across Azerbaijan. Moreover,

we develop five sets of casualty cluster centers (CCCs), one for each phase of the

deployment, based on the projected locations of both friendly and enemy forces. Each

deployment phase has between 10 and 40 CCCs with a total of 122 CCCs throughout

all five phases of the deployment. Both the number of CCCs and the demand at each

CCC in each deployment phase depend on the expected conflict intensity. Figure 1

depicts the 29 potential MASF locations and the 122 CCCs across the five deployment

phases in the representative military MEDEVAC planning scenario.

We leverage data provided from TRADOC’s GAAT scenario to determine the total

number of CCCs in each phase, average number of MEDEVAC requests per hour in

each phase (i.e., λψ), total demand in each phase, and conflict intensity in each phase,

which is listed in Table 1. We assume an average service time per MEDEVAC mission

of 1
µ

= 1.1 hours which is based on real MEDEVAC mission data provided by Kotwal

et al. (2016).

Table 1. Representative Military MEDEVAC Planning Scenario Settings

Phase, ψ Number of CCCs λψ Total Demand Conflict Intensity
1 28 0.75 180 21.4%

2A 10 1.25 300 35.7%
2B 19 2.25 540 65.3%
3A 37 3.50 840 100%
3B 28 2.50 600 71.4%

Kotwal et al. (2016) show that the time between critical injury and definitive

care is an important factor for the survival of combat casualties. As such, we take

into account the expected times to complete MEDEVAC mission tasks (e.g., mission
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Figure 1. Representative Military MEDEVAC Planning Scenario Disposition
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preparation, travel to and from casualty collection point, and load and unload casu-

alties) and assume an aeromedical helicopter distance threshold of d̄ = 437 nautical

miles (Bastian, 2010; Keneally et al., 2016). By limiting aeromedical helicopters to

servicing CCCs within our distance threshold, we ensure that casualties receive the

necessary, life-saving medical care in an appropriate amount of time.

2.4.2 Testing Procedure, Results, & Analysis

Utilizing the aforementioned parameter settings, we solve P2 with different values

for (a) the total number of aeromedical helicopters to allocate in each phase, h; (b)

the maximum number of located MASFs allowed in any phase, ε2; and (c) the maxi-

mum number of MASF relocations allowed throughout the deployment, ε3. As such,

it is necessary to find the upper bounds on ε2 and ε3. To do this for a given h-value,

we solve our three objectives in a lexicographic manner. That is, we solve Problem

P2 in the absence of Constraints (18) and (19), denoting the optimal objective func-

tion value as ν. We find the upper bound on ε2 by minimizing f2(lmax), subject to

Constraints (5)-(15) and f1(y) ≥ ν, setting ε2 equal to the resulting optimal objective

function. Likewise, the upper bound on ε3 is found by maximizing f3(r) subject to

Constraints (5)-(15), and (18), and f1(y) ≥ ν, setting ε3 equal to the resulting opti-

mal objective function value. Accordingly, we repeat this procedure to find the upper

bounds on ε2 and ε3 for h ∈ {4, 6, 8}.

Once the upper bounds for ε-values are determined, we iteratively re-solve P2

over a lattice of decreasing values of ε2 and ε3 for each level of h to develop three

h-value specific sets of operationally feasible solutions for the (ε2, ε3)-combinations

(i.e., as shown in Figure 2), among which subsets of non-inferior (i.e., Pareto optimal)

solutions can be identified (i.e., as shown in Figure 3).

The results from Figure 2 show that, as the number of aeromedical helicopters to
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Figure 2. Optimal demand coverage values for different h-levels and (ε2, ε3)-
combinations
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allocate (i.e., h) increases, the total expected coverage of demand increases for all ε2

and ε3 values tested. For example, the total expected coverage of demand for the most

restrictive cases (i.e., when ε2 = 1 and ε3 = 0) when h equals 4, 6, and 8 are 28.1%,

49.7%, and 55.0%, respectively. Similarly, the total expected coverage of demand for

the least restrictive cases (i.e., when ε2 and ε3 are unbounded) when h equals 4, 6,

and 8 are 41.2%, 79.5%, and 93.9%, respectively. Figure 2 also illustrates the trade-

offs between the maximum number of located MASFs allowed in any phase, ε2, and

the maximum number of MASF relocations allowed throughout the deployment, ε3.

Military deployments are typically subject to resource, force projection, and logistical

restrictions that impact how many MASFs can be operating (i.e., located) in any

given phase and how many relocations can occur throughout the deployment. It is

beneficial for military medical planners to assess the trade-offs between increasing

and/or decreasing these restrictions. For example, when (h, ε2, ε3) = (6, 1, 1), the

total expected coverage is 51.6%. The results from our model reveal that it is more

advantageous to increase ε2 from 1 to 2, which results in a total expected coverage of

70.5%, rather than increase ε3 from 1 to 2, which results in a total expected coverage

of 51.8%. For this particular example, this result reveals that it is more beneficial to

locate an additional MASF (if resources are available) during at least one phase of

the deployment rather than allowing for one additional relocation over the course of

the entire deployment.

From the solutions represented in Figure 2, Figure 3 depicts the subset of solutions

that are non-inferior for each h-level. That is, Figure 3 depicts the Pareto-optimal

frontier for h ∈ {4, 6, 8} over the combinations of (ε2, ε3), indicating the solutions

that should be considered for implementation. For reference, the percent of demand

covered by the non-inferior solutions depicted in Figure 3 are reported in Table 2.

Of the 84 (ε2, ε3)-combinations depicted in Figure 2, only 4.7%, 7.1%, and 8.3% are
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Figure 3. Pareto Optimal Points
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Pareto-optimal for h ∈ {4, 6, 8}, respectively. These results indicate that, as h in-

creases, the number of Pareto optimal solutions does, as well. However, this result

does not hold true for larger h-values. For example, when h increases from 8 to 12

the percentage of Pareto optimal solutions remains 8.3%. By considering the oper-

ational constraints on the second and third objectives, the Pareto optimal solutions

represent the minimum number of relocations required to maximize demand coverage,

given ε2. Figures 2 and 3 and Table 2 highlight the conflicting nature of the decision

maker’s objectives. These results can subsequently inform decisions regarding how

many bases should be located and how many relocations are necessary throughout the

deployment. Moreover, these results help decision makers identify effective, efficient,

and robust military MEDEVAC resource allocations (e.g., concerning personnel and

materiel) prior to deployment.

Table 2. Pareto Optimal Solutions

h (ε2, ε3) Percentage of Demand Covered
4 (1,3) 30.6%

(2,5) 40.4%
(3,6) 40.9%
(4,7) 41.2%

6 (1,3) 52.9%
(2,5) 76.9%
(3,6) 78.5%
(4,7) 78.9%
(5,8) 79.3%
(6,9) 79.5%

8 (1,3) 58.4%
(2,5) 89.7%
(3,6) 92.4%
(4,8) 93.2%
(5,9) 93.7%
(6,10) 93.8%
(7,11) 93.9%
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2.4.3 Comparison to Phase-Specific Optimal Solutions

The analyses herein assume a baseline of (h, ε2, ε3) = (8, 2, 1). That is, the baseline

instance considers a scenario wherein eight aeromedical helicopters must be allocated

in each phase, a maximum of two MASFs can be located in any given phase, and

a maximum of one MASF relocation is allowed throughout the entire deployment.

Utilizing the baseline case, we compare the model’s multi-phase optimal solution

against the phase-specific optimal solutions for each deployment phase and report

the results in Figures 4-6. The multi-phase optimal solution considers both ε2 and

ε3, whereas the phase-specific optimal solutions only consider ε2-restrictions. That

is, the phase-specific optimal solutions are not restricted by relocation constraints.

Figure 4. Phase-Specific Versus Multi-Phase Expected Coverage

Figure 4 compares the expected coverage of the phase-specific and multi-phase

optimal solutions for each deployment phase. The results show that the expected cov-
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erage for the phase-specific optimal solutions is greater than or equal to the expected

coverage of the multi-phase optimal solutions for each deployment phase. When only

one MASF relocation is allowed (i.e., in the multi-phase solution approach), the over-

all expected coverage is approximately 80.86%. When this restriction is relaxed (i.e.,

in the phase-specific solution approach), the overall expected coverage increases to

approximately 87.89%.

(a) Phase 1 Optimal (b) Multi-Phase 1 Optimal

(c) Phase 2A Optimal (d) Multi-Phase 2A Optimal

Figure 5. Panels (a)-(d) display the respective phase-specific and multi-phase optimal
MASF locations for Phases 1 and 2A

Figures 5 and 6 illustrate the MASF locations for both the phase-specific and
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(a) Phase 2B Optimal (b) Multi-Phase 2B Optimal

(c) Phase 3A Optimal (d) Multi-Phase 3A Optimal

(e) Phase 3B Optimal (f) Multi-Phase 3B Optimal

Figure 6. Panels (a)-(f) display the respective phase-specific and multi-phase optimal
MASF locations for Phases 2B, 3A, and 3B
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multi-phase optimal solutions. As expected, the single-phase optimal solutions have

more MASF relocations than the multi-phase optimal solutions. More specifically,

the optimal layout of MEDEVAC assets in each deployment phase requires a total

of seven MASF relocations throughout the deployment. Recall that our baseline

scenario limits the multi-phase optimal solutions to one relocation throughout the

entire deployment and, therefore, may not attain as much expected coverage as the

phase-specific optimal solutions.

2.5 Conclusions

In this chapter, we examined the medical evacuation (MEDEVAC) location-allocation

problem wherein military medical planners must decide where to locate mobile aeromed-

ical staging facilities (MASFs) given a set of potential site locations and how many

aeromedical helicopters to allocate to each MASF over the phases of a deployment.

The intent of this research is to assess different location-allocation strategies that may

improve the performance of a deployed Army MEDEVAC system and ultimately in-

crease the survival probability of combat casualties. We developed an integer math-

ematical programming formulation of the MEDEVAC location-allocation problem

which enables examination of a variety of problem features relating to different mil-

itary medical planning scenarios. The ε-constraint Method was utilized to address

the multi-objective problem of maximizing total expected coverage of demand, mini-

mizing the maximum number of located MASFs in any deployment phase, and min-

imizing the the total number of MASF relocations throughout the deployment. The

solution methodology defines trade-offs between competing objectives and substan-

tially reduces the set of alternatives for military medical planners to consider when

planning for and executing combat operations. Utilizing a notional, representative

planning scenario based on high-intensity combat operations in southern Azerbaijan,
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we demonstrated the applicability of our model and illustrated the differences between

the model’s (multi-phase) optimal solution and the phase-specific optimal solutions

that disregard concerns of MASF relocation limitations.

The results from the computational experiments reveal the trade-offs between the

objectives considered. As the number of aeromedical helicopters available to allocate

increases, the total expected coverage of demand increases. Moreover, the results

highlight the conflicting nature between the objectives and show the trade-offs as

restrictions applied to the second and third objectives are respectively tightened or

relaxed. As the restrictions on the second and/or third objectives decrease, the total

expected coverage of demand increases in a non-decreasing manner and vice versa.

The comparisons between the model’s optimal solution and the phase-specific op-

timal solutions show the differences in MASF locations and total expected demand

coverage. Whereas the phase-specific solutions offer more expected coverage com-

pared to our model’s solutions (i.e., 87.89% versus 80.69%, respectively), they do not

consider relocation restrictions. More specifically, the phase-specific solutions present

a greater operational burden via the relocation of seven MASFs throughout the de-

ployment, which is a 600% increase compared to our model’s solution for the baseline

instance (i.e., one MASF relocation).

This research is of interest to both military and civilian medical planners. Medical

planners can utilize our mathematical formulation and solution approach to compare

different location-allocation strategies for a variety of planning scenarios. Whereas

the process for implementing this research into active MEDEVAC operations may be

difficult, the point of this research is to show that there exist operations research tech-

niques that may improve MEDEVAC system performance. Moreover, this research

can be extended by examining different objectives, parameter settings, and scenarios.
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III. Approximate Dynamic Programming for Military
Medical Evacuation Dispatching Policies

3.1 Introduction

One of the primary objectives of the Army Health System (AHS) is to evacuate

combat causalities to medical treatment facilities (MTFs) in an effective, efficient,

and responsive manner that saves casualties’ lives. The Army casualty evacuation

(CASEVAC) system and the Army medical evacuation (MEDEVAC) system are the

two main options available to evacuate combat casualties. The Army CASEVAC

system rapidly transports combat casualties from predetermined casualty collection

points (CCPs) to MTFs via non-medical evacuation platforms without en route med-

ical care. The Army MEDEVAC system rapidly transports combat casualties from

predetermined CCPs to MTFs via dedicated, standardized medical evacuation plat-

forms having onboard medical professionals who are equipped and prepared to provide

necessary en route medical care. Combat casualties transported via the Army CASE-

VAC system may not be transported to the appropriate MTF and/or receive proper

en route medical care, increasing their chances of long-term disabilities and death. As

such, the AHS prioritizes the Army MEDEVAC system as the primary link between

roles of medical care for casualties throughout combat operations (Department of the

Army, 2016).

Whereas the Army MEDEVAC system utilizes both ground and aerial MEDEVAC

platforms, this chapter focuses solely on aerial MEDEVAC platforms (i.e., aeromedical

helicopters), as they are the predominant platform utilized in contemporary MEDE-

VAC operations. For example, approximately 91% of the United States (US) mili-

tary combat casualties that occurred in Afghanistan between September 11, 2001 and

March 31, 2014 were evacuated via aerial MEDEVAC (Kotwal et al., 2016). Aeromed-
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ical helicopters are better suited for MEDEVAC operations when compared to ground

platforms due to their speed, versatility, and ability to travel across terrain in remote

areas inaccessible to ground platforms (De Lorenzo, 2003). Aeromedical helicopters

were first employed during the Korean Conflict, where they immediately became a

highly valued asset within the MEDEVAC system. The US military recognizes the

importance of aeromedical helicopters and continues to improve upon the capabilities

of aeromedical helicopters. Such improvements contribute to the recent increases in

combat casualty survivability rates. For example, the case fatality rate (CFR) (i.e.,

percentage of fatalities among all combat casualties) decreased from 19.1% in World

War II to 15.8% in Vietnam. The CFR further decreased to 8.6% during the 13 years

of conflict in Afghanistan ranging from 2001-2014. The decreased CFRs, or increased

combat casualty survivability rates, are attributed to the advances in the capabilities

of aeromedical helicopters and the resulting decrease in response time for combat

casualties to receive proper medical care (Kotwal et al., 2016).

Military medical planners seek to design effective and efficient deployed MEDE-

VAC systems prior to major combat operations. An effective and efficient MEDEVAC

system minimizes combat mortality, serves as a force multiplier, boosts the morale

of deployed military personnel, and provides connectivity, as appropriate, between

the AHS and the military health system (Department of the Army, 2016). Many

important decisions must be considered when designing a MEDEVAC system. These

decisions include determining where to locate both MEDEVAC staging areas and

MTFs, establishing how many MEDEVAC units to allocate at each staging area,

identifying an appropriate MEDEVAC dispatching policy, and recognizing when re-

deployment of MEDEVAC units is necessary and/or possible.

Identifying a dispatching policy that dictates which MEDEVAC unit to dispatch

to a particular 9-line MEDEVAC request (i.e., a request for MEDEVAC support from
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a combat unit that contains nine standardized elements of information (Department

of the Army, 2016)), commonly referred to as the MEDEVAC dispatching problem,

is vital to the success of a deployed MEDEVAC system and is the primary focus

of this chapter. The US military currently utilizes a closest-available dispatching

policy wherein the dispatch authority dispatches the closest-available MEDEVAC

unit to an incoming 9-line MEDEVAC request, regardless of the incoming request’s

characteristics (e.g., location and precedence level) or the MEDEVAC system state

(e.g., location and availability of all MEDEVAC units). Moreover, the US military

typically considers a MEDEVAC unit to be unavailable until it returns to its original

staging area due to the challenges redeployment poses (e.g., refueling and resupplying

requirements).

This chapter examines the MEDEVAC dispatching problem wherein a dispatch-

ing authority must decide which available MEDEVAC unit (if any) to dispatch to

prioritized requests for service (i.e., 9-line MEDEVAC requests). We assume that the

locations of MEDEVAC staging areas and MTFs are known, as are the allocation of

MEDEVAC units to each staging area. Moreover, we assume that each MEDEVAC

unit has the capability to satisfy all mission requirements of any submitted 9-line

MEDEVAC request. Distinct from previous research efforts (e.g., Keneally et al.

(2016); Rettke et al. (2016); Jenkins et al. (2018), and Robbins et al. (2018)), we

consider a high-intensity combat scenario and allow redeployment (i.e., dispatching a

MEDEVAC unit during an ongoing mission) when a MEDEVAC unit is returning to

its respective staging area.

We develop a discounted, infinite-horizon Markov decision process (MDP) model

of the MEDEVAC dispatching problem to maximize the expected total discounted

reward attained by the system. The MDP model provides an appropriate frame-

work for solving the MEDEVAC dispatching problem; however, the large size of the
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motivating problem instance yields an uncountable state space, rendering classical

dynamic programming methods (e.g., value iteration or policy iteration) inappropri-

ate. As such, we employ approximate dynamic programming (ADP) solution tech-

niques to produce high-quality dispatching policies relative to the currently practiced

(i.e., closest-available) dispatching policy. We develop and test two distinct ADP

solution techniques that both utilize an approximate policy iteration (API) algorith-

mic framework. The first API algorithm utilizes least-squares temporal differences

(LSTD) learning for policy evaluation, whereas the second API algorithm leverages

neural network (NN) learning for policy evaluation. Given the MEDEVAC dispatch-

ing problem features, we define a set of basis functions to approximate the value

function around the post-decision state for both of our proposed algorithms. We

construct a notional, representative planning scenario based on high-intensity com-

bat operations in southern Azerbaijan to demonstrate the applicability of our MDP

model and to examine the efficacy of our proposed ADP solution techniques. More-

over, we design and conduct computational experiments to determine how selected

problem features and algorithmic features impact the quality of solutions attained by

our ADP-generated dispatching policies.

An important difference between this chapter and other papers in this research

area is the incorporation of redeployment. This aspect gives the dispatching au-

thority the ability to task a MEDEVAC unit to service incoming or queued requests

directly after the MEDEVAC unit completes service at an MTF’s co-located MEDE-

VAC staging area (i.e., completes refuel and re-equip of MEDEVAC supplies). This

relaxes the restriction that MEDEVAC units must return to their own staging areas

to refuel and re-equip after delivering combat casualties to an MTF prior to being

tasked with another service request, which is a recognized limitation of previous work.

Since MTFs are co-located with MEDEVAC staging areas, it is reasonable to assume
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that MEDEVAC units can refuel and re-equip at an MTF’s co-located MEDEVAC

staging area immediately after the MEDEVAC unit transfers combat casualties to

the MTF staff, especially during high-intensity combat operations. In addition to the

incorporation of redeployment, this chapter jointly considers the relevant problem fea-

tures examined in earlier research efforts, including admission control, queueing, and

explicit modeling of the number of casualties per casualty event. Lastly, this chap-

ter demonstrates the improved efficacy of an NN-based ADP solution technique for

the MEDEVAC dispatching problem, as compared to a solution technique previously

offered in the literature (e.g., in Rettke et al. (2016)).

The remainder of this chapter is structured as follows. Section 3.2 provides a liter-

ature review of recent germane research concerning the civilian ambulance dispatching

problem and the military MEDEVAC dispatching problem. Section 3.3 describes the

MEDEVAC dispatching problem. Section 3.4 presents the MDP model formulation

of the MEDEVAC dispatching problem. Section 3.5 proposes two ADP solution tech-

niques for the MEDEVAC dispatching problem. Section 3.6 demonstrates the appli-

cability of our MDP model and examines the efficacies of our proposed ADP solution

techniques via computational experiments. Section 3.7 concludes the chapter.

3.2 Literature Review

The importance, sensitivity, and vital nature of the decision-making process for

both civilian and military emergency medical service (EMS) response systems have

been recognized and studied by many operations research scientists since the 1960s.

Operations research techniques such as stochastic modeling, discrete optimization,

and simulation have commonly been applied by researchers examining EMS response

systems due to their ability to provide rigorous, defensible, and quantitative insights

(Green and Kolesar, 2004). The primary areas of research in this field include de-
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termining where to locate servers (e.g., Toregas et al. (1971); Church and ReVelle

(1974); Daskin and Stern (1981); Grannan et al. (2015),and Lejeune and Margot

(2018)) and how many servers to allocate per location (e.g., Hall (1972); Berlin and

Liebman (1974), and Baker et al. (1989)); establishing how to dispatch servers in

response to service requests (e.g., Ignall et al. (1982); Green and Kolesar (1984);

Majzoubi et al. (2012); Mayorga et al. (2013), and Bandara et al. (2014)); deciding

when and where to relocate servers (if necessary) (e.g., Chaiken and Larson (1972);

Kolesar and Walker (1974); Berman (1981); van Barneveld et al. (2016), and Sud-

tachat et al. (2016)); and identifying which performance measure to use to model

casualty survivability rates (e.g., Erkut et al. (2008); McLay and Mayorga (2010),

and Knight et al. (2012)). Indeed, the literature examining EMS systems is quite

extensive. Herein, we briefly review only highly related previous research concerning

the civilian ambulance dispatching problem and the related military medical evacu-

ation (MEDEVAC) dispatching problem. We refer the reader to the survey papers

by Swersey (1994), Brotcorne et al. (2003), Ingolfsson (2013), and Aringhieri et al.

(2017) and the references therein for an extensive review of the related literature.

Decisions concerning which ambulance to dispatch to a request for service must

be made sequentially over time and under uncertainty. Accordingly, many researchers

utilize a dynamic programming approach to model the ambulance dispatching prob-

lem.

McLay and Mayorga (2013b) develop a Markov decision process (MDP) model

of the ambulance dispatching problem. A novel problem feature they consider is

the presence of patient prioritization classification errors within the EMS system.

The authors utilize relative value iteration, a classical exact dynamic programming

algorithm, to solve the dispatching problem for relatively small problem instances.

Importantly, the authors include a simulation-based analysis as an excursion, show-
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ing that relaxing the assumption of exponentially distributed service times in their

problem formulation has little impact on the optimal policy and attendant policy in-

sights. McLay and Mayorga (2013a) modify the Markov decision problem introduced

in McLay and Mayorga (2013b) to consider another interesting problem feature -

- that of balancing equity and efficiency. For example, it may be optimal from a

system-wide perspective to adopt dispatching policies that decrease performance in

rural, low-population density districts in favor of increased performance in urban,

high-population density districts. However, notions of equity may constrain the mag-

nitude of acceptable performance decreases in some districts despite their positive

impact on overall system performance. The authors formulate a linear programming

model to solve a constrained ambulance dispatching problem, analyzing dispatch poli-

cies based on four different notions of equality. Both McLay and Mayorga (2013b)

and McLay and Mayorga (2013a) do not consider redeployment (i.e., sending an am-

bulance that just completed service to a new location or call rather than allowing it

to return to its predetermined base) nor do they consider relocation (i.e., moving an

idle ambulance to a new base in anticipation of improving coverage of expected calls

for service). Moreover, they neither allow the queueing of calls nor examine admission

control. They assume all calls must be serviced, and if all ambulances are busy, then

it is assumed that a nearby EMS system (exogenous to the model) services the call.

Whereas McLay and Mayorga (2013b) and McLay and Mayorga (2013a) provide

meaningful insights concerning the ambulance dispatching problem, their problem

formulations and attendant solution approaches only allow for the investigation of

small-scale problem instances. The following three papers proffer formulations and

solution approaches that allow for the investigation of large-scale problem instances.

Maxwell et al. (2010) model and solve an ambulance dispatching problem. More

specifically, the authors seek to determine a high-quality ambulance redeployment
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policy -- the movement of ambulances that have just completed service at a hospital

to another base (rather than simply return to its “home” base) -- to improve sys-

tem performance. They do not consider dispatching decisions, instead enforcing a

closest-available (i.e., myopic) dispatching policy when responding to calls. More-

over, they do not consider relocation -- the repositioning of idle ambulances already

located at bases. Queueing of calls is allowed. The authors adopt an approximate dy-

namic programming (ADP) approach, utilizing an approximate policy iteration (API)

algorithmic strategy to solve their ambulance dispatching (redeployment) problem.

The value function is approximated via an affine combination of deliberately de-

signed, problem-specific basis functions. They utilize a least-squares policy evaluation

(LSPE) technique within their API algorithm to update their basis function coeffi-

cients. The authors demonstrate the efficacy of their approach by application to two

metropolitan EMS response scenarios, achieving improved performance as compared

to benchmark policies in both circumstances.

Schmid (2012) also models and solves an ambulance dispatching problem. The

author jointly considers ambulance dispatching and redeployment decisions to im-

prove system performance. Relocation is not considered, but queueing of calls is

allowed. The author adopts an ADP solution approach, utilizing an approximate

value iteration algorithmic strategy to solve their ambulance dispatching and rede-

ployment problem. The value function is approximated via a spatial and temporal

aggregation scheme. The author demonstrates the efficacy of their approach by appli-

cation to a Vienna, Austria EMS response scenario, achieving improved performance

as compared to the currently practiced policy.

Nasrollahzadeh et al. (2018) also model and solve an ambulance dispatching prob-

lem. The authors jointly consider ambulance dispatching, redeployment, and reloca-

tion decisions. Queueing of calls is allowed. Similar to Maxwell et al. (2010), the
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authors adopt an ADP approach, also utilizing an API algorithmic strategy to solve

their ambulance dispatching, redeployment, and relocation problem. The value func-

tion is approximated via an affine combination of deliberately designed, problem

specific basis functions. They also utilize an LSPE technique within their API algo-

rithm to update their basis function coefficients. Moreover, the authors construct and

exploit a lower bound on expected response time to improve algorithm performance.

They demonstrate the efficacy of their approach by application to a Mecklenburg

County, North Carolina EMS response scenario, achieving improved performance as

compared to multiple benchmark policies.

Compared to the three aforementioned research endeavors, our research also jointly

considers dispatching and redeployment decisions but in a military MEDEVAC con-

text. The key differences extend beyond the problem application area and also in-

clude the specifics of the solution methodologies applied. Our ADP approach also

utilizes an API algorithmic framework, but we develop a distinct set of basis func-

tions, accounting for our slightly different problem structure. Moreover, we develop

and compare two different policy evaluation mechanisms within our ADP algorithms,

least-squares temporal differences (LSTD) learning and neural network (NN) learn-

ing, both of which are distinct from the LSPE and aggregation schemes employed by

Maxwell et al. (2010), Schmid (2012), and Nasrollahzadeh et al. (2018). Moreover,

we examine 30 problem instances herein to analyze our solution approaches and to

gain generalizable policy insights rather than focus the testing on only one or two

case studies.

While similarities exist between civilian and military EMS dispatching problems,

several substantive differences remain that must be considered when examining the

performance of a military EMS system. Military medical evacuation is often a more

complex process, wherein the travel, load, and unload times are much greater and
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exhibit more variance (Jenkins et al., 2018). In a civilian EMS system, an ambulance

crew may arrive at the scene of a call and determine that subsequent transport of

the patient to a hospital is unwarranted. The ambulance then might either wait for

further orders from its dispatching authority or travel to another waiting location.

In a military EMS system, such situations do not occur. All calls result in casualties

being transported to a medical treatment facility (MTF), and an opportunity for

redeployment or repositioning from a field location does not exist because the cause

of the casualty evacuation requirement may be an adversary who poses a continuing

threat to the MEDEVAC itself, possibly across a geographic subregion. Moreover,

routine relocation of idle aeromedical helicopter units is rare due to several resource

and availability requirements (e.g., refueling, resupply, and armed escort). Another

distinguishing problem feature of civilian and military EMS systems concerns how

the system earns rewards, typically a function of response time. Unlike civilian EMS

systems wherein the primary cause of death is typically cardiac arrest, the primary

cause of death for military casualties is extreme blood loss (Garrett, 2013). As such, it

is vital to stabilize and transport battlefield casualties to an appropriate MTF and into

surgery rather than simply transporting medical personnel to the casualty collection

point as rapidly as possible (Keneally et al., 2016). Accordingly, instead of defining

response time as the time it takes an ambulance to reach the patient (as for civilian

EMS systems), military EMS systems must define response time as the time it takes an

aeromedical helicopter to pick up and then transport the casualties to an appropriate

MTF. These key problem features impact the structure of the dispatching problem

and attendant decision models, suggesting that successful solution methods (e.g.,

novel basis functions in an ADP approach) and resulting policy insights for military

EMS systems -- the primary novel contributions of such military focused research --

differ enough from those of civilian EMS systems to warrant specific investigation.
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With regard to a military MEDEVAC system planning context, researchers have

spent most of their time examining the MEDEVAC location-allocation problem wherein

medical planners must determine where to locate MEDEVAC staging areas and MTFs

as well as decide how many aeromedical helicopters to allocate to each staging area.

Solution methodologies for the MEDEVAC location-allocation problem typically at-

tempt to balance maximizing demand coverage and minimizing response time subject

to resource, force projection, and logistical constraints. Another important, but less

studied problem within the military health care system is the MEDEVAC dispatching

problem wherein a dispatching authority must decide which (if any) MEDEVAC unit

(i.e., aeromedical helicopter) to dispatch in response to a submitted 9-line MEDEVAC

request. The military currently utilizes a closest-available dispatching policy, which

tasks the closest-available MEDEVAC unit to respond to service requests regardless of

other factors (e.g., precedence, demand distribution, and request arrival rate). Many

researchers (e.g., Carter et al. (1972); Nicholl et al. (1999), and Kuisma et al. (2004))

show that closest-available dispatching policies generally are not optimal. Moreover,

the incorporation of precedence levels and other system factors (e.g., demand distri-

bution and request arrival rate) into the construction of dispatching polices tends to

improve the overall casualty survivability rates.

EMS research that focuses specifically on the military MEDEVAC dispatching

problem exists but is relatively new to the field. To the best of our knowledge,

Keneally et al. (2016) are responsible for the first paper that focuses solely on the

military MEDEVAC dispatching problem. Keneally et al. (2016) utilize an MDP

model to examine different MEDEVAC dispatching policies in the Afghanistan the-

ater. The authors assume that each 9-line MEDEVAC request (i.e., service call)

arrives sequentially according to a Poisson process and that the locations of MEDE-

VAC staging areas and MTFs are predetermined and do not change during combat
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operations. Their MDP model accounts for three different evacuation precedence cat-

egories: urgent, priority, and routine. Moreover, their MDP model accounts for other

system factors such as the possibility that an armed escort may be required to escort

aeromedical helicopters during MEDEVAC missions. The authors utilize a response

time threshold (RTT) to model their MDP reward function and conduct computa-

tional experiments wherein MEDEVAC units operate in support of counterinsurgency

operations in Afghanistan. The results identify that the default dispatching policy in

practice, the closest-available policy, is not always optimal.

Several researchers expand upon the work of Keneally et al. (2016) by incorpo-

rating more realistic problem parameters (e.g., queueing and admission control) and

examining large-scale scenarios that require approximation techniques. Jenkins et al.

(2018) improve the fidelity of MEDEVAC dispatching models considered by Keneally

et al. (2016) by incorporating admission control and queueing. Similar to Keneally

et al. (2016), Jenkins et al. (2018) utilize an MDP model to examine the MEDEVAC

dispatching problem. However, Jenkins et al. (2018) utilize a survivability function

based on response time instead of an RTT to model their MDP reward function. The

incorporation of admission control gives the dispatching authority the ability to reject

incoming requests, thereby reserving MEDEVAC units for higher precedence requests

instead of satisfying all requests for service. Moreover, the incorporation of queueing

allows the dispatching authority to accept incoming requests regardless of the status

of the MEDEVAC units and place them in a queue to be serviced at a later time. This

differs from Keneally et al. (2016), who do not allow requests to be queued and simply

reject requests if all MEDEVAC units are busy, thereby assuming they are then ser-

viced by an exogenous resource (i.e., casualty evacuation (CASEVAC)). Jenkins et al.

(2018) conduct a computational experiment based on counterinsurgency operations

in Afghanistan similar to that examined by Keneally et al. (2016). The authors com-
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pare the optimal dispatching policies produced via their MDP model against three

practitioner-friendly baseline policies. Their results align with the results yielded by

Keneally et al. (2016), which show that current dispatching polices that are derived

from a closest-available approach are suboptimal. Both Keneally et al. (2016) and

Jenkins et al. (2018) examine small-scale computational experiments wherein their re-

spective MDP models are able to generate optimal solutions in a tractable amount of

time. However, these scenarios are not practical due to their small size, and while they

do yield insights related to MEDEVAC dispatching polices, a practical (i.e., large-

scale) scenario should be analyzed to give military medical planners more realistic

insights. Unfortunately, the “curse of dimensionality” renders dynamic programming

techniques intractable for the analysis of such scenarios.

Rettke et al. (2016) expand upon Keneally et al. (2016) by incorporating queue-

ing and by examining large-scale scenarios via approximation techniques. Similar to

Keneally et al. (2016), Rettke et al. (2016) utilize an MDP model to examine the

MEDEVAC dispatching problem. The MDP model provides an appropriate frame-

work for solving the MEDEVAC dispatching problem, but classical dynamic program-

ming techniques are computationally intractable for large-scale instances due to their

high dimensionality and uncountable state space. As such, Rettke et al. (2016) employ

an ADP technique to determine high-quality dispatching policies. Their ADP tech-

nique involves an API algorithmic strategy that incorporates LSTD learning for policy

evaluation. Moreover, Rettke et al. (2016) utilize a survivability function based on

response time instead of an RTT to model their reward function. The authors utilize

a large-scale computational experiment based on contingency operations in northern

Syria to compare the ADP-generated dispatching policies against the default policy

typically implemented in practice (i.e., closest-available dispatching policy). Their

results indicate that the ADP policy outperforms the closest-available policy by over
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30% with regard to a measure related to expected response time. These results sup-

port the notion that the current policy in practice is suboptimal, which aligns with

the findings in Keneally et al. (2016).

Robbins et al. (2018) expand upon Keneally et al. (2016) by incorporating ad-

mission control and by examining large-scale scenarios via approximation techniques.

Similar to Keneally et al. (2016), Robbins et al. (2018) utilize an MDP model to

examine the MEDEVAC dispatching problem. As discussed above, the MDP gives

an appropriate framework for solving the MEDEVAC dispatching problem, but clas-

sical dynamic programming techniques are computationally intractable in large-scale

scenarios due to their high dimensionality and uncountable state space. As such,

Robbins et al. (2018) employ ADP techniques to determine high-quality dispatching

policies. Their ADP technique involves an API algorithmic strategy that utilizes a

hierarchical aggregation value function approximation scheme. Moreover, Robbins

et al. (2018) utilize a survivability function based on response time instead of an

RTT to model their reward function. The authors utilize both small-scale and large-

scale computational experiments based on contingency operations in Afghanistan

to compare optimal dispatching policies, ADP-generated dispatching policies, and

closest-available dispatching policies. Their results indicate that the ADP-generated

policies are nearly optimal (i.e., within 1% optimal) for the small-scale experiments

and outperform the closest-available policy in both the small-scale and large scale ex-

periments by up to nearly 10% with regard to a measure related to expected response

time. Similar to the findings of Keneally et al. (2016), Jenkins et al. (2018), and

Rettke et al. (2016), these results indicate that the current MEDEVAC dispatching

policy in practice is suboptimal.

This chapter seeks to build upon the current MEDEVAC dispatching problem

research by utilizing an MDP model that incorporates the problem features pre-
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viously examined (i.e., admission control and queueing) as well as redeployment,

which has yet to be included in any model of the MEDEVAC dispatching problem.

One of the limiting assumptions present in each of the aforementioned works is that

MEDEVAC units must return to their own staging areas to refuel and re-equip after

delivering combat casualties to an MTF prior to servicing another request. Rede-

ployment gives a MEDEVAC unit the flexibility to service an incoming or queued

request directly after the MEDEVAC unit completes service at an MTF’s co-located

MEDEVAC staging area (i.e., completes refuel and re-equip of MEDEVAC-related

supplies). This assumption is reasonable to make when the receiving MTF is co-

located with a MEDEVAC staging area, which is nearly always the case in practice,

since MEDEVAC units can refuel and re-equip at the co-located MEDEVAC staging

area immediately after they transfer combat casualties to the MTF. This chapter also

builds upon the current MEDEVAC dispatching problem research by proposing and

testing an NN-based ADP solution technique, which has not been previously applied

in this research area.

3.3 Problem Description

In this section, we describe the military medical evacuation (MEDEVAC) dis-

patching problem in detail. The Army Health System (AHS) seeks to provide MEDE-

VAC capabilities across a wide range of military operations. One of the primary com-

ponents of the AHS is the Army MEDEVAC system. The effectiveness of the Army

MEDEVAC system is measured by how quickly combat casualties are transferred

from the battlefield to medical treatment facilities (MTFs), which depends on the

dispatching policy of MEDEVAC units (i.e., aeromedical helicopters) (Department

of the Army, 2016). Identifying a MEDEVAC dispatching policy resulting in rapid

evacuation of combat casualties from the battlefield to an MTF, commonly referred
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to as the MEDEVAC dispatching problem, is an important and vital task that mil-

itary medical planners must consider prior to execution of combat operations. It is

important to note that the primary cause of death on the battlefield is hemorrhage

(i.e., severe blood loss), which is why the effectiveness of a MEDEVAC system is

measured by the total time it takes to transfer casualties to an MTF rather than

the time it takes MEDEVAC units to arrive at the casualty collection points (CCPs)

(Malsby III et al., 2013). The effect of blood loss on mortality rates is sufficiently im-

portant that, in an effort to increase combat survivability rates, senior Army leaders

established policies to equip MEDEVAC units with in-flight blood transfusion capa-

bilities (Malsby III et al., 2013). A recent study on the MEDEVAC blood transfusion

capabilities by Elster and Bailey (2017) indicates that there is not enough evidence

to support a different effectiveness measure of MEDEVAC systems. As such, this

research measures the effectiveness of a MEDEVAC system by utilizing the mission

profile of evacuating combat casualties from CCPs to the nearest, suitable MTFs to

receive the necessary level of medical treatment.

The dedicated aeromedical helicopters utilized in the Army MEDEVAC system

are under the command of the general support aviation battalion (GSAB). The GSAB

serves as the primary decision-making authority for the Army MEDEVAC system and

is responsible for monitoring and synchronizing the execution of all aerial MEDEVAC

operations (Department of the Army, 2016). Moreover, the GSAB operates as the

dispatching authority and is responsible for managing all submitted 9-line MEDEVAC

requests during combat operations. Dispatching decisions must be made quickly upon

receipt of 9-line MEDEVAC requests since any delay in dispatching decisions may

significantly decrease the chances of survival for combat casualties. As such, it is

vital that the GSAB implements a dispatching policy resulting in high-quality and

rapid transport of combat casualties from CCPs to appropriate MTFs to ensure the
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highest probability of survival.

Most 9-line MEDEVAC requests are transmitted over a dedicated MEDEVAC ra-

dio frequency with a prescribed amount of information regarding the casualty event.

Such information includes the location of the pick-up site (i.e., point of injury (POI)

or CCP), radio frequency and call sign, number of casualties by precedence, special

equipment required, status and nationality of each casualty, and the threat level at the

pick-up site. Note that in practice aeromedical evacuation assets can be dispatched

directly to a POI instead of a CCP if the situation allows (i.e., little to no hostile fire

is present). However, in this chapter, we assume that POI sites are located in unfa-

vorable, unsecured locations and, as such, casualties must be transported to nearby,

pre-determined CCPs for aeromedical evacuation. We assume CCPs are located in

areas that are more secure and viable for helicopter landings, reducing the need for

armed escorts and/or rescue hoists as well as reducing the chances of aeromedical

assets being damaged by enemy combatants. It is a straightforward modification to

consider a direct flight to a POI rather than a CCP, but it should be recognized that

such a modification would alter MEDEVAC service and response times. The on-site

medic (if available) or the senior military person in charge utilizes a three-category

casualty triage scheme to determine the evacuation precedence category. Urgent and

priority 9-line MEDEVAC requests are life-threatening requests that must be serviced

within 1 hour and 4 hours, respectively. Routine 9-line MEDEVAC requests are not

life-threatening requests, but still must be serviced within 24 hours to prevent further

deterioration of health (Department of the Army, 2016).

Once a casualty event takes place and a 9-line MEDEVAC request is submitted,

the GSAB makes an admission control decision. Admission control gives the GSAB

the ability to observe the current state of the MEDEVAC system prior to making the

decision to accept or reject submitted requests. If a submitted request is accepted
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(i.e., admitted) into the MEDEVAC system and there is at least one MEDEVAC

unit available, then the GSAB makes a dispatching decision regarding which (if any)

available MEDEVAC unit to task to service the accepted request. The GSAB has

the ability to place accepted requests in a queue, even when a MEDEVAC unit is

available for dispatch. The ability to place an accepted request in a queue regardless

of the availability status of each MEDEVAC unit allows the dispatching authority to

forgo immediately servicing a lower precedence request to ensure a MEDEVAC unit is

available to service a likely, higher precedence request that is anticipated to occur in

the near future. If a submitted request is admitted into the MEDEVAC system and

there are no available MEDEVAC units, then the request will be placed in a queue.

If the submitted request is rejected from the system, then the request is redirected to

be handled by an exogenous organization via casualty evacuation (CASEVAC).

When a MEDEVAC unit completes service at an MTF’s co-located MEDEVAC

staging area (i.e., completes refuel and re-equip of MEDEVAC supplies) and there is

at least one queued request, the GSAB must make a dispatching decision regarding

which (if any) available MEDEVAC unit to task to service the queued request. Again,

the GSAB is not required to task immediately an available MEDEVAC to service

queued requests. Queued requests are serviced in order based first on their precedence

category (i.e., urgent, priority, and routine) and second on their entry time into the

MEDEVAC system. Figure 7 visually depicts the prioritized first-come-first-serve

(FCFS) single-queue, multiple service MEDEVAC queueing system with admission

control.

Once a MEDEVAC unit is tasked to service a particular 9-line MEDEVAC request,

it must respond immediately, flying to the pre-determined CCP and then evacuating

the combat casualties to the nearest MTF while onboard medical professionals provide

necessary enroute medical care to the casualties. Each MEDEVAC mission can be
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Figure 7. MEDEVAC Queueing System with Admission Control

broken down into eleven distinct and sequential events as reported in Table 3 (Rettke

et al., 2016; Jenkins et al., 2018; Robbins et al., 2018). Unlike other papers in this

research area, we assume that once a MEDEVAC unit completes Event 9 it becomes

available to service incoming or queued requests. If there are no requests in the

MEDEVAC system when a MEDEVAC unit completes Event 9, the MEDEVAC

unit will travel back to its staging area. However, if a 9-line MEDEVAC request is

submitted and admitted into the system, a MEDEVAC unit that is traveling back to

its staging area is considered to be available, and the GSAB can task the MEDEVAC

unit to service the submitted request.

Table 3. MEDEVAC Mission Distinct and Sequential Events

Event Description
1 9-line MEDEVAC request submission.
2 MEDEVAC unit tasked to service a request.
3 MEDEVAC unit travels to CCP.
4 MEDEVAC unit arrives at CCP.
5 MEDEVAC unit travels from CCP to nearest MTF.
6 MEDEVAC unit arrives at nearest MTF.
7 MEDEVAC unit completes transfer of the combat casualties to the MTF staff
8 MEDEVAC unit travels from MTF to MTF’s co-located MEDEVAC staging area.
9 MEDEVAC unit completes refuel and re-equip.
10 MEDEVAC unit travels from MTF’s co-located MEDEVAC staging area to its dedicated staging area.
11 MEDEVAC unit arrives at its dedicated staging area.

The admission control and dispatching decisions concerning how 9-line MEDE-

VAC requests and MEDEVAC units are managed are complicated by the fact that

future requests are not known a prior. Instead, the information regarding future re-

quests only becomes known to the MEDEVAC system upon their occurrence. Both
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a dynamic and stochastic approach are needed when analyzing the MEDEVAC dis-

patching problem. The stochastic aspects of this problem arise from the uncertainty

concerning the demand for service (i.e., casualty event arrivals, severity, and locations)

as well as the variability in MEDEVAC unit dispatch, travel, and service times. In

this research, we leverage information related to MEDEVAC dispatch, travel, and

service times to parameterize the models. Moreover, we utilize stochastic simulation

methods to model 9-line MEDEVAC request submissions to assist military medical

planners in identifying an appropriate MEDEVAC dispatching policy prior to the

execution of major combat operations.

3.4 MDP Formulation

This section describes the Markov decision process (MDP) model formulation

of the medical evacuation (MEDEVAC) dispatching problem. The objective of the

MDP model is to determine which (if any) available MEDEVAC unit (i.e., aeromed-

ical helicopter) to dispatch in response to a 9-line MEDEVAC request to maximize

the expected total discounted reward over an infinite horizon. Our model assumes

that casualty events (i.e., 9-line MEDEVAC requests) arrive sequentially over time

according to a Poisson process with parameter λ. Recall that a Poisson process has

independent and stationary increments. The assumption of independent increments

is reasonable in the context of MEDEVAC request arrivals because there are a large

number of violent interactions that take place between small, widely dispersed groups

of forces that result in localized requests for medical evacuation that are unrelated

to one another, and therefore the numbers of arrivals that occur in disjoint time in-

tervals are independent. Moreover, the assumption of stationary increments is also

reasonable due to the underlying presumption that the implicit sizes, locations, and

dispositions of forces generally remain fixed with respect to time. As such, the num-
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ber of arrivals that occur in any interval of time depends only on the length of the

time interval. Furthermore, it is important to note that a fixed, stationery λ-value

can be interpreted as a parameter-value representing a particular season and time of

day (e.g., summer during daylight hours). As such, military medical planners should

utilize an appropriate λ-value to investigate peak activity for anticipated conditions

when planning medical evacuation support.

Each arrival is characterized by the location (i.e., the coordinates of latitude and

longitude), the precedence category (i.e., urgent, priority, and routine), and the num-

ber of casualties of the service request. Our MDP model utilizes a contribution (i.e.,

reward) function that is monotonically decreasing with respect to response time. That

is, we assume that the MEDEVAC system earns greater rewards for servicing requests

in lesser time. Moreover, the reward function accounts for the different precedence

categories of requests by rewarding the service of higher precedence requests with

higher rewards than the service of lower precedence requests. We define the response

time for each MEDEVAC mission as T7−T1, where T7 and T1 are the times at which

Events 7 and 1 take place, respectively. We define the service time for each MEDE-

VAC mission as T9 − T2, where T9 and T2 are the times at which Events 9 and 2

take place, respectively. The MEDEVAC mission response and service times depend

on the location of the casualty collection point (CCP) and the servicing MEDEVAC

unit.

Having introduced the characteristics of the arrival process and the nature of the

service times, we can now proceed with the MDP model formulation. We define and

describe the components of our MDP model (i.e., the decision epochs, state space,

action space, reward function, transition function, objective function, and optimality

equation) in detail below.

The decision epochs in the MEDEVAC dispatching problem are the points in time
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wherein the dispatch authority is required to make a decision. Let T = {1, 2, . . .}

denote the set of decision epochs. A decision epoch is observed when one of two

event types occurs. The first event type is the submission of a 9-line MEDEVAC

request. The second event type is the change in a MEDEVAC unit’s status from

busy to available, which occurs once a MEDEVAC unit completes service at a medical

treatment facility’s (MTF’s) co-located MEDEVAC staging area (i.e., completes refuel

and re-equip of MEDEVAC supplies). That is, once a MEDEVAC unit completes

the refuel and re-equip of MEDEVAC supplies at an MTF’s co-located MEDEVAC

staging area, a decision epoch occurs and the MEDEVAC unit becomes available to

service requests.

At decision epoch t ∈ T , the state St ∈ S gives the minimum description of the

MEDEVAC system required to compute the decision function, transition function,

and reward function. The MEDEVAC system state is represented by the tuple St =

(τt,Mt, Qt, R̂t) wherein τt represents the current system time at epoch t, Mt represents

the MEDEVAC unit status tuple at epoch t, Qt represents the queue status tuple at

epoch t, and R̂t represents the incoming service request status tuple at epoch t.

The MEDEVAC unit status tuple Mt describes the status of every MEDEVAC

unit in the system at epoch t. The tuple Mt can be written as

Mt = (Mtm)m∈M ≡ (Mt1,Mt2, . . . ,Mt|M|),

where M = {1, 2, . . . , |M|} denotes the set of MEDEVAC units in the system and

the tuple Mtm contains information pertaining to MEDEVAC unit m ∈M at epoch

t. The tuple Mtm can be written as

Mtm = (atm, etm, rtm, µtm, ptm, ctm),
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wherein atm denotes the availability status of MEDEVAC unit m at epoch t, etm

denotes the entry time into the MEDEVAC system of the request being serviced by

MEDEVAC unit m at epoch t, rtm denotes the expected system response time for

the current MEDEVAC mission (i.e., combat casualties delivered to nearest MTF)

of MEDEVAC unit m at epoch t, µtm denotes the expected system service time for

the current MEDEVAC mission of MEDEVAC unit m at epoch t, ptm denotes the

precedence category of the request being serviced by MEDEVAC unit m at epoch

t, and ctm represents the number of combat casualties being serviced by MEDE-

VAC unit m at epoch t. We assume that MEDEVAC units refuel and re-equip at

the MTF’s co-located MEDEVAC staging area immediately after delivering combat

casualties. As such, MEDEVAC units are available to service incoming or queued

requests upon completing service at the MTF’s co-located MEDEVAC staging area.

MEDEVAC units return back to their staging areas after completing service at an

MTF’s co-located MEDEVAC staging area if they are not tasked to service another

request. However, if a 9-line MEDEVAC request is submitted while a MEDEVAC

unit is returning back to its staging area, that MEDEVAC unit can be tasked to

service the incoming request because we assume that the MEDEVAC unit refueled

and re-equipped at the MTF’s co-located MEDEVAC staging area. We let atm = 0 if

MEDEVAC unit m is idle and available at its staging area at epoch t, 1 if MEDEVAC

unit m is unavailable (e.g., enroute to CCP, transferring casualties to MTF staff, or

refueling) at epoch t, and 2 if MEDEVAC unit m is available and enroute to its

original staging area (i.e., completed service at an MTF’s co-located staging area).

The queue status tuple Qt describes the status of every queued request in the

system at epoch t. The tuple Qt can be written as

Qt = (Qtq)q∈Q ≡ (Qt1, Qt2, . . . , Qt|Q|),
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where Q = {1, 2, . . . , |Q|} denotes the set of queued requests in the system and the

tuple Qtq contains information pertaining to queued request q ∈ Q at epoch t. We

let qmax denote the maximum number of requests that can be queued at any given

time and, therefore, |Q| ≤ qmax at any given time. The tuple Qtq can be written as

Qtq = (ltq, ζtq, ρtq, κtq),

wherein ltq denotes the location of the queued request q at epoch t, ζtq denotes the

entry time into the MEDEVAC system of queued request q at epoch t, ρtq denotes the

precedence category of queued request q at epoch t, and κtq is the number of combat

casualties within queued request q at epoch t. If there are no queued requests in the

system at epoch t, then Qt1 = (0, 0, 0, 0). The order in which queued requests are

serviced is first based on precedence and second by the entry time. That is, higher

precedence requests are placed in front of lower precedence request in the queue, and

requests having the same precedence level are ordered based on their respective entry

times.

The incoming service request status tuple R̂t describes the status of an incoming

request, if one is present, awaiting an admission decision at epoch t. The tuple R̂t

can be written as

R̂t = (l̂srt , p̂
sr
t , ĉ

sr
t ),

wherein the random variable l̂srt denotes the location of the incoming service request

at epoch t, the random variable p̂srt denotes the precedence category of the incoming

service request at epoch t, and the random variable ĉsrt represents the number of

combat casualties within the incoming service request at epoch t. At epoch t, the

information in l̂srt , p̂srt , and ĉsrt has just been realized and is no longer uncertain.

However, l̂srt , p̂srt , and ĉsrt are random variables at epochs 1, 2, . . . , t − 1 because the
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information they contain is still uncertain. Let R̂t = (0, 0, 0) if there is not an

incoming service request at epoch t (i.e., when the state transition occurs due to

a change in a MEDEVAC unit’s status from busy to available).

Events are generated by an arrival of a 9-line MEDEVAC request or a change in a

MEDEVAC unit’s status from busy to available. When a 9-line MEDEVAC request

is submitted to the system, the dispatching authority must consider the current state

of the MEDEVAC system as well as the location and precedence category of the

submitted service request and quickly determine which (if any) available MEDEVAC

unit to dispatch to service the request. The dispatching authority can only dispatch

available MEDEVAC units that are allowed to traverse to the CCP. We assume that

the MEDEVAC system employs an intra-zone policy regarding airspace access, which

allows any MEDEVAC unit to service any request, regardless of the CCP location.

Moreover, our model allows the dispatching authority to reject submitted requests

regardless of the current state of the MEDEVAC system. If a submitted request

is rejected from entering the MEDEVAC system, it is transferred to the regional

command authority for a decision regarding how the request will be serviced (e.g., via

ground MEDEVAC or non-medical air evacuation platforms) (Robbins et al., 2018).

If a submitted request is accepted and there is at least one available MEDEVAC

unit, then the general support aviation battalion (GSAB) must make a dispatching

decision regarding which (if any) available MEDEVAC unit to task to service the

accepted request. As we discussed in the previous section, the GSAB is not required

to task available MEDEVAC units to service a request. Instead, the GSAB may

forgo servicing a lower precedence request in anticipation of servicing a likely, higher

precedence request in the near future. If a submitted request is accepted and there

are no available MEDEVAC units, then the request is placed in a queue. Recall that

the order at which queued requests are serviced is first based on precedence and then
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by the entry time.

The admission control decision is represented by the decision variable xrejectt ∈

{∆, 0, 1} at epoch t. When R̂t = (0, 0, 0) (i.e., there is no incoming service request

present in the system) then xrejectt = ∆. When xrejectt = 0, the incoming service

request is admitted to the MEDEVAC system whereas, when xrejectt = 1, the incoming

service request is rejected from entering the MEDEVAC system.

The dispatching decision is represented by the tuple xdt = (xsrt , x
qr
t ), wherein xsrt

represents the incoming service request dispatch decision tuple and xqrt represents

the queued request dispatch decision tuple at epoch t. A dispatching decision may

be necessary when either a 9-line MEDEVAC request is submitted to the system or

the status of a MEDEVAC unit changes from busy to available. Let A(St) = {m :

m ∈M, atm 6= 1} denote the set of available MEDEVAC units when the state of the

system is St at epoch t.

The incoming service request dispatch decision tuple xsrt describes the dispatching

authority’s decision regarding which MEDEVAC unit (if any) to dispatch to the

incoming service request at epoch t. The tuple xsrt can be written as

xsrt = (xsrtm)m∈A(St).

The decision variable xsrtm = 1 if MEDEVAC unit m ∈ A(St) is dispatched to service

the incoming service request at epoch t, and 0 otherwise.

The queued request dispatch decision tuple xqrt describes the dispatching author-

ity’s decision with regard to which MEDEVAC unit (if any) to dispatch to the first

queued request (i.e., Qt1) at epoch t. The tuple xqrt can be written as

xqrt = (xqrtm)m∈A(St).
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The decision variable xqrtm = 1 if MEDEVAC unit m ∈ A(St) is dispatched to service

Qt1 at epoch t, and 0 otherwise.

Let xt = (xrejectt , xdt ) denote a compact representation of the admission control and

dispatching decision variables at epoch t. At each epoch t, the dispatching authority

is bounded by two constraints. Given the definition of an indicator variable as IR = 1

if R̂t 6= (0, 0, 0), 0 otherwise, the first constraint,

∑
m∈A(St)

(IRx
sr
tm + xqrtm) ≤ 1, (20)

limits the dispatching authority to dispatch at most one MEDEVAC unit at epoch t.

The next constraint,

xrejectt +
∑

m∈A(St)

xsrtm ≤ 1, (21)

forces the dispatching authority to accept incoming service requests (i.e., xrejectt = 0)

if a MEDEVAC unit is tasked to service the incoming service request (i.e., xsrtm = 1

for some m ∈ A(St)).

By letting IA = 1 if A(St) 6= ∅, 0 otherwise and letting IQ = 1 if |Q| 6= 0, 0

otherwise, the set of feasible actions when a decision is required can be written as

X (St) =



(
∆, ({0}|A(St)|, {0, 1}|A(St)|×|Q|)

)
, if IR = 0, IA = 1, IQ = 1(

∆, ({0}|A(St)|, {0}|A(St)|×|Q|)
)
, if IR = 0, IA = 1, IQ = 0(

1, ({0}|A(St)|, {0, 1}|A(St)|×|Q|)
)
, if IR = 1, IA = 1, |Q| = qmax(

1, ({0}|A(St)|, {0}|A(St)|×|Q|)
)
, if IR = 1, IA = 0, |Q| = qmax(

{0, 1}, ({0, 1}|A(St)|, {0, 1}|A(St)|×|Q|)
)
, if IR = 1, IA = 1, IQ = 1, |Q| < qmax(

{0, 1}, ({0}|A(St)|, {0}|A(St)|×|Q|)
)
, if IR = 1, IA = 0, |Q| < qmax(

{0, 1}, ({0, 1}|A(St)|, {0}|A(St)|×|Q|)
)
, if IR = 1, IA = 1, IQ = 0

(22)
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where Constraints (20) and (21) must be satisfied. The first two cases in Equation

(22) represent all feasible actions when an event is triggered due to a change in a

MEDEVAC unit’s status from busy to available, whereas the last five cases represent

all feasible actions when an event is triggered due to a 9-line MEDEVAC request

submission.

The next component of the MEDEVAC MDP model is the transition function.

This function describes how the MEDEVAC system evolves from one state to another

as new information arrives and decisions are made. The state transition function

St+1 = SM(St, xt,Wt+1) represents the dynamics of the MEDEVAC system, wherein

the state of the system at the beginning of epoch t + 1 (i.e., St+1) is determined by

the state of the system at epoch t (i.e., St), the decision that is made at epoch t (i.e.,

xt), and the information that arrives at epoch t+ 1 (i.e., Wt+1).

The MEDEVAC system earns rewards when the dispatching authority tasks MEDE-

VAC units to service incoming or queued 9-line MEDEVAC requests. There are

several factors that impact the amount of reward attained by the system, e.g., the

location and precedence category of the request being serviced as well as the location

of the servicing MEDEVAC unit. Let C(St, xt) denote the reward (i.e., contribution)

attained by the MEDEVAC system if MEDEVAC unit m ∈ M is tasked to service

a precedence k (i.e., urgent, priority, or routine) 9-line MEDEVAC request, 0 other-

wise. That is, the MEDEVAC system only earns rewards when MEDEVAC units are

tasked to service requests. When a MEDEVAC unit is tasked to service a request,

the reward attained by the MEDEVAC system is computed as follows

C(St, xt) = wkctmδ(rtm, etm),

wherein wk is a tradeoff parameter that varies the reward attained based on k ∈ K =

{1, 2, 3} (i.e., the precedence category of the request being serviced), ctm is the number
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of combat casualties within the request being serviced, m is the MEDEVAC unit

tasked to service the request, and δ(rtm, etm) is a utility function that is monotonically

decreasing with respect to the system response time and entry time of the request

being serviced. The elements contained in K = {1, 2, 3} correspond to the casualty

event precedence categories urgent, priority, and routine, respectively.

We let Xπ(St) represent the decision function that returns a decision, xt, for each

state St ∈ S based on a given policy, π. Our MDP model seeks to find the optimal

policy, π∗, from the class of policies (Xπ(St))π∈Π to maximize the expected total

discounted reward earned by the MEDEVAC system. The objective of the MDP

model can be written as

max
π∈Π

Eπ
[
∞∑
t=1

γτtC (St, X
π(St))

]
,

where γ ∈ [0, 1) is a fixed discount factor and τt is the time at which the system visits

state St. The optimal policy π∗ is found using the Bellman Equation

V (St) = max
xt∈X (St)

(
C(St, xt) + γ(τ̂(St+1)−τt)E [V (St+1)|St, xt]

)
, (23)

wherein τ̂(St+1) denotes the time at which the system visits state St+1.

Unfortunately, the high dimensionality and uncountable state space of our MDP

model makes computing an optimal policy using Equation (23) intractable. Instead,

in the following section we propose two approximate dynamic programming (ADP)

techniques that utilize value function approximation schemes to attain high-quality

dispatching policies relative to the currently practiced closest-available dispatching

policy. The ADP-generated policies are compared with the closest-available dispatch-

ing policy, applied to a realistic scenario in Section 3.6.
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3.5 ADP Formulation

This section presents two approximate dynamic programming (ADP) solution

techniques for the military medical evacuation (MEDEVAC) dispatching problem.

Both of our ADP techniques approximate the value function, Equation (23), via a

post-decision state convention due to its computational advantages (Powell, 2011;

Ruszczynski, 2010). The computational advantages of utilizing a post-decision state

convention are two-fold: first, it allows us to avoid computing expectations explicitly;

and second, it substantially reduces the dimensionality of the state space. The post-

decision state Sxt refers to the state of the MEDEVAC system immediately after the

system is in pre-decision state St and action xt is taken. With this information, we

proceed by modifying the optimality equation to incorporate the post-decision state

convention. Let

V x(Sxt ) = E [V (St+1)|Sxt ] (24)

denote the value of being in post-decision state Sxt . By substituting Equation (24)

into Equation (23), the optimality equation is given as follows

V (St) = max
xt∈X (St)

(
C(St, xt) + γ(τ̂(St+1)−τt)V x(Sxt )

)
. (25)

By recognizing that the value of being in post decision state Sxt−1 is given by

V x(Sxt−1) = E
[
V (St)|Sxt−1

]
, (26)

and substituting Equation (25) into Equation (26), the optimality equation around

the post-decision state is given as follows

V x(Sxt−1) = E
[

max
xt∈XSt

(
C(St, xt) + γ(τ̂(St+1)−τt)V x(Sxt )

)∣∣Sxt−1

]
. (27)
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Despite the computational advantages of the post-decision state convention, Equation

(27) remains computationally intractable due to the size of our motivating problem

instance. As such, both of our ADP techniques utilize a value function approximation

approach via a fixed set of basis functions to determine approximate solutions to

Equation (27). The key challenge in our approximation scheme is the identification

of basis functions and features that are important to the MEDEVAC dispatching

problem.

The selection of appropriate basis functions and features for the MEDEVAC dis-

patching problem is difficult but is necessary to attain high-quality dispatching poli-

cies. We leverage Rettke et al. (2016) and Maxwell et al. (2010) to design and develop

eight conceptually motivated basis functions. Let φf (S
x
t ) be a basis function, where

f ∈ F is a feature and F is the set of features. The first basis function describes the

availability status of each MEDEVAC unit in the system and is written as

φ1m(Sxt ) = atm, ∀ m ∈M.

The next four basis functions capture information pertaining to the 9-line MEDE-

VAC requests currently being serviced. The second basis function captures the ex-

pected time from the current system time τt until MEDEVAC unit m transfers care

of onboard casualties to the nearest MTF staff and is written as

φ2m(Sxt ) =


rtm − τt, if atm = 1, τt < rtm

0, otherwise.

, ∀ m ∈M.

The third basis function captures the expected time from the current system time
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τt until MEDEVAC unit m completes service and is written as

φ3m(Sxt ) =


µtm − τt, if atm = 1

0, otherwise.

, ∀ m ∈M.

The fourth basis function captures the precedence category of the 9-line MEDE-

VAC request being serviced by MEDEVAC unit m and is written as

φ4m(Sxt ) =


ptm, if atm = 1, τt < rtm

0, otherwise.

, ∀ m ∈M.

The fifth basis function captures the number of casualties being serviced by

MEDEVAC unit m and is written as

φ5m(Sxt ) =


ctm, if atm = 1, τt < rtm

0, otherwise.

, ∀ m ∈M.

The last three basis functions capture information about the 9-line MEDEVAC

requests in the queue. The sixth basis function captures the expected total time,

including wait time (i.e., time in queue), travel times, and service times (i.e, unload

times and load times), that request q ∈ Q will incur in the MEDEVAC system if it

is serviced by MEDEVAC unit m and is written as

φ6qm(Sxt ) = ψtqm − etq, ∀ q ∈ Q, ∀ m ∈M,

wherein ψtqm represents the expected system response time if MEDEVAC unit m is

tasked to service queued request q at epoch t.

The seventh basis function captures the precedence category of each queued re-
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quest and is written as

φ7q(S
x
t ) = ρtq, ∀ q ∈ Q.

The last basis function captures the number of casualties contained in each queued

request and is written as

φ8q(S
x
t ) = κtq, ∀ q ∈ Q.

3.5.1 Least-Squares Temporal Differences

The first ADP solution technique we propose utilizes an approximate policy iter-

ation (API) algorithmic strategy that incorporates least-squares temporal differences

(LSTD) learning for policy evaluation. API is an algorithmic approach derived from

exact policy iteration, wherein a sequence of policies and associated approximate

value functions are produced in two repeated, alternating phases: policy evaluation

and policy improvement. Within a policy evaluation phase (i.e., inner loop), our

LSTD-API algorithm approximates the value function for a fixed policy π via sim-

ulation and LSTD learning. Within a policy improvement phase (i.e., outer loop),

the algorithm generates a new policy based on the data collected in the immediately

preceding policy evaluation phase. Before presenting our LSTD-API algorithm, we

define our post-decision state value function approximation scheme, which leverages

the basis functions we developed.

For our LSTD-API algorithm, let

V̄ x(Sxt |θ) =
∑
f∈F

θfφf (S
x
t ) ≡ θTφ(Sxt ) (28)

denote the linear approximation architecture, wherein θ = (θf )f∈F is a column vector

of basis function weights and φ(Sxt ) is a column vector of basis function evaluations.

For a given vector θ, which represents a fixed policy π, decisions are made utilizing
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the policy (i.e., decision function)

Xπ(St|θ) = argmax
xt∈XSt

{
C(St, xt) + γ(τ̂(St+1)−τt)V̄ x(Sxt |θ)

}
. (29)

Substituting Equations (28) and (29) into Equation (27), the approximate post-

decision state value function is given as follows

θTφ(Sxt−1) = E
[
C
(
St, X

π(St|θ)
)

+ γ(τ̂(St+1)−τt)θTφ(Sxt )
∣∣Sxt−1

]
. (30)

Having defined the approximate post-decision state value function, we proceed

with the presentation of our LSTD-API algorithm we employ herein, which is adapted

in part from research by Rettke et al. (2016) and is displayed in Algorithm 1.

Algorithm 1 Least-Squares Temporal Differences Approximate Policy Iteration
(LSTD-API) Algorithm

1: Initialize θ.
2: for n = 1 to N do
3: for j = 1 to J do
4: Generate a random post-decision state, Sxt−1,j.
5: Record basis function evaluation φ(Sxt−1,j).
6: Simulate transition to next pre-decision state, St,j.
7: Determine decision xt utilizing Equation (29).
8: Record contribution C(St,j, xt).
9: Record discount factor γ(τ̂(St+1,j)−τt).

10: Record basis function evaluation φ(Sxt,j).
11: end for
12: Update θ utilizing Equations (31) and (33).
13: end for
14: Return the approximate value function V̄ x(·|θ).

The LSTD-API algorithm starts by initializing the basis function weight vector

θ, which represents an initial fixed policy. We then begin a policy evaluation phase

wherein, for each iteration j = 1, 2, . . . , J , the following steps occur. We randomly

select a post-decision state Sxt−1,j and record the associated basis function evaluation
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φ(Sxt−1,j). Next, we simulate the system evolving from post-decision state Sxt−1,j to a

pre-decision state St,j and determine the best decision xt via Equation (29). Once xt

is determined, we record the contribution C(St,j, xt), discount factor γ(τ̂(St+1,j)−τt,j),

and basis function evaluation φ(Sxt,j). We collect a total of J temporal difference

sample realizations in a single policy evaluation phase, where C
(
St,j, X

π(St,j|θ)
)

+

γ(τ̂(St+1,j)−τt,j)θTφ(Sxt,j) − θTφ(Sxt−1,j) is the jth temporal difference given the basis

function weight vector θ.

We proceed into a policy improvement phase wherein, for each iteration n =

1, 2, . . . , N , the following steps occur. The vector θ̂, a sample estimate of θ, is com-

puted via least-squares regression. We seek a basis function weight vector θ̂ that

makes the sum of the J temporal differences equal to zero. To provide a more com-

pact representation of our basis function evaluations, discounts, and contributions, we

define basis function matrices Φt−1 and Φt, a discount matrix Γt, and a contribution

vector Ct. More precisely, let

Φt−1 =


φ(Sxt−1,1)>

...

φ(Sxt−1,J)>

 , Φt =


φ(Sxt,1)>

...

φ(Sxt,J)>

 , Γt =


γ

(
τ̂(St+1,1)−τt,1

)
11×|F|

...

γ

(
τ̂(St+1,J )−τt,J

)
11×|F|

 , Ct =


C(St,1)

...

C(St,J)

 ,

wherein the rows and columns in the basis function matrices respectively correspond

to sampled post-decision states and basis function evaluations, the rows of the dis-

count matrix are the recorded discounts for the sampled post-decision states, and

the elements of the contribution vector are the recorded contribution values. We let

11×|F| denote a row vector of |F| ones. Utilizing this notation, the sample estimate

of θ is computed via the normal equation as follows

θ̂ =
[
(Φt−1 − Γt � Φt)

>(Φt−1 − Γt � Φt) + ηI
]−1

(Φt−1 − Γt � Φt)
>Ct, (31)

wherein � is the Hadamard product operator and ηI is an |F| × |F| diagonal matrix
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having diagonal penalty entries given by the regularization parameter η ≥ 0. We

utilize regularization (i.e., ridge regression here) when computing θ̂ to avoid matrix

inversion difficulties (by ensuring (Φt−1 − Γt � Φt)
>(Φt−1 − Γt � Φt) is nonsingular)

and to reduce generalization error (by ensuring we do not overfit the data collected

in any single policy evaluation iteration). Moreover, when there are many correlated

variables in a linear regression model (a common occurrence in a simulation-based

solution approach such as ours), its coefficients can become poorly determined and

exhibit high variance (Hastie et al., 2009). For example, a very large positive co-

efficient on one feature can be offset by a similarly large negative coefficient on a

correlated feature. Ridge regression shrinks the regression coefficients by imposing a

penalty on their size, which helps prevent such unwanted variance in the θ-coefficients

over multiple policy improvement iterations.

Once θ̂ is computed, we utilize a polynomial stepsize rule to smooth in θ̂ with the

previous estimate θ. The stepsize rule is given by

αn =
1

nβ
, (32)

wherein β ∈ (1
2
, 1]. The polynomial stepsize rule αn is an extension of the basic

harmonic sequence and greatly impacts our algorithm’s rate of convergence and at-

tendant solutions. The rate at which αn declines as the policy improvement iteration

counter n increases depends on the value of β. Smaller values of β slow the rate at

which αn declines; however, the best value of β depends on the problem at hand and,

as such, is a parameter that must be tuned (Powell, 2011).

Next, we update θ with the following equation

θ ← αnθ̂ + (1− αn)θ, (33)
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wherein the θ on the right hand side is the previous estimate based on previous policy

improvement iterations, and θ̂ is our new estimate from the current iteration. As the

number of iterations n increases, we place less emphasis on sample estimates (i.e., θ̂)

and more emphasis on the estimate based on the first n− 1 iterations (i.e., θ).

Once θ is updated via Equation (33), we have completed one policy improvement

iteration of the LSTD-API algorithm. If n < N then the algorithm continues by

starting another policy evaluation phase. The algorithmic parameters N , J , η, and

β are tunable, where N is the number of iterations of the policy improvement phase,

J is the number of iterations of the policy evaluation phase, η is the regularization

term within the θ estimate computation, and β is the polynomial stepsize parameter.

3.5.2 Neural Network

The second ADP solution technique we propose also utilizes an API algorithmic

strategy, but instead incorporates neural network (NN) learning for policy evalua-

tion. Recall that API is an algorithmic approach derived from exact policy iteration,

wherein a sequence of policies and associated approximate value functions are pro-

duced in two repeated, alternating phases: policy evaluation and policy improvement.

Within a policy evaluation phase (i.e., inner loop), our NN-API algorithm approxi-

mates the value function for a fixed policy π via simulation and NN learning. Within

a policy improvement phase (i.e., outer loop), the algorithm generates a new policy

based on the data collected in the immediately preceding policy evaluation phase. Be-

fore presenting our NN-API algorithm, we define our NN-based, post-decision state

value function approximation scheme, which also leverages the basis functions pre-

sented at the beginning of Section 3.5.

To approximate the value of being in post-decision state Sxt , we utilize a feed-

forward NN comprised of three layers: an input layer, a hidden layer, and an output
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layer. The information provided to the input layer is a set of |F| basis function

evaluations associated with a post-decision state Sxt . The hidden layer consists of a

set of activation units H = {1, 2, . . . , |H|} (i.e., nonlinear perceptron nodes). The

size of the hidden layer, |H|, is a tunable characteristic of our NN-API algorithm.

Because the hidden layer requires |H| inputs, the input layer produces |H| outputs,

which are given by

Y
(2)
h (Sxt ) =

∑
f∈F

Θ
(1)
f,hφ

s
f (S

x
t ), ∀ h ∈ H, (34)

wherein Θ(1) ≡
[
Θ

(1)
f,h

]
f∈F ,h∈H

is an |F| × |H| matrix of weights controlling the func-

tion mapping from the input layer to the hidden layer. A nonlinear logistic sigmoid

activation function

σ(y) =
1

1− e−y

is applied to each Y
(2)
h (Sxt ) to produce the inputs for the hidden layer, which are given

by

Z
(2)
h (Sxt ) = σ

(
Y

(2)
h (Sxt )

)
, ∀ h ∈ H. (35)

The hidden layer produces a single, scalar output, which is given by

Y (3)(Sxt ) =
∑
h∈H

Θ
(2)
h Z

(2)
h (Sxt ), (36)

wherein Θ(2) ≡
[
Θ

(2)
h

]
h∈H

is an |H| × 1 matrix of weights controlling the function

mapping from the hidden layer to the output layer. The output layer produces a

single, scalar output by applying the sigmoid activation function σ to Y (3)(Sxt ). This

computation results in the post-decision state value function approximation given by

V̄ x(Sxt |Θ) = σ
(
Y (3)(Sxt )

)
, (37)
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wherein Θ =
(
Θ(1),Θ(2)

)
is the parameter tuple that compactly represents the NN

weights.

Note that, for application within the NN model, we scale the |F| basis func-

tion evaluations via a mean normalization procedure. That is, for each feature, we

transform each of its values by first subtracting its mean and then dividing by its

range. Scaling the inputs provides benefits (Hastie et al., 2009); it ensures all in-

put dimensions are treated equally in our regularization process, allows selection of

meaningful initial weights, and enables more effective optimization when we update

the NN weights. We denote the scaled basis functions by a superscript s (e.g., in

Equation (34)).

For a given tuple Θ, our NN-API algorithm makes decisions utilizing the policy

(i.e., decision function)

Xπ(St|Θ) = argmax
xt∈XSt

{
C(St, xt) + γ(τ̂(St+1)−τt)V̄ x(Sxt |Θ)

}
. (38)

Substituting Equations (37) and (38) into Equation (27), the approximate post-

decision state value function is given as follows

V̄ x(Sxt−1|Θ) = E
[
C
(
St, X

π(St|Θ)
)

+ γ(τ̂(St+1)−τt)V̄ x(Sxt |Θ)
∣∣Sxt−1

]
. (39)

Having defined the NN-based, approximate post-decision state value function, we

proceed with the presentation of our NN-API algorithm we employ herein, which is

displayed in Algorithm 2.

The NN-API algorithm starts by initializing Θ, the function mapping weight ma-

trices Θ(1) and Θ(2), an initial fixed policy. We select small, random values near

zero for the initial weights, as recommended by Hastie et al. (2009). This weight

initialization policy enables better NN model performance when the weights are up-
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Algorithm 2 Neural Network Approximate Policy Iteration (NN-API) Algorithm

1: Initialize Θ with small, random values near zero.
2: for n = 1 to N do
3: for j = 1 to J do
4: Generate a random post-decision state, Sxt−1,j.
5: Compute basis function evaluation φs(Sxt−1,j).
6: Compute V̄ x(Sxt−1,j|Θ) utilizing Equations (34)-(37). Record observed

value.
7: Simulate transition to next pre-decision state, St,j.
8: Compute v̂j utilizing Equation (40). Record observed value.
9: end for

10: Normalize the recorded value function realizations, (v̂j)
J
j=1.

11: Update Θ(1) and Θ(2) utilizing Equations (41)-(45).
12: end for
13: Return the approximate value function V̄ x(·|Θ).

dated later (in a policy improvement phase) via a quasi-Newton optimization solution

procedure; individual units localize to directions and introduce nonlinearities where

needed. Moreover, this weight initialization policy forces symmetry breaking; initial-

ization with exact zero weights leads to zero derivatives and perfect symmetry, which

results in the weights never being updated.

We then begin a policy evaluation phase wherein, for each iteration j = 1, 2, . . . , J ,

the following steps occur. We randomly select a post-decision state Sxt−1,j and compute

the associated scaled basis function evaluation φs(Sxt−1,j). Utilizing Equations (34)-

(37), we compute the value function approximation V̄ x(Sxt−1,j|Θ) and record the value.

Next, we simulate the system evolving from post-decision state Sxt−1,j to a pre-decision

state St,j, and we compute (and record) a sample realization of the value attained

from the current policy by solving

v̂j = max
xt∈XSt,j

(
C(St,j, xt) + γ(τ̂(St+1,j)−τt)V̄ x(Sxt,j|Θ)

)
. (40)

In a single policy evaluation phase, we collect a total of J sample realizations of the
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value attained by following the current policy.

We proceed into a policy improvement phase wherein, for each iteration n =

1, 2, . . . , N , the following steps occur. We normalize the J value function sample

realizations collected in the just completed policy evaluation phase, so the NN model

may be properly fit to the collected approximate value function data.

We are now ready to update our NN weights and obtain an updated policy. We

seek Θ-values that make the NN model fit the observed value function data well.

We utilize a regularized, mean-squared error measure of fit (i.e., cost, error, or loss

function), expressed as follows

L(Θ) =
1

2J

J∑
j=1

(
v̂j − V̄ x(Sxt−1,j|Θ)

)2
+

η

2J

(∑
f∈F

∑
h∈H

(
Θ

(1)
f,h

)2

+
∑
h∈H

(
Θ

(2)
h

)2
)
. (41)

The penalty term in the loss function prevents overfitting the data and reduces the

generalization error. The regularization (i.e., weight decay) parameter η ≥ 0 is a

tunable parameter; larger η-values will tend to shrink the Θ-weights toward zero.

In our LSTD-API algorithm, we minimize a regularized, residual sum-of-squared

error (i.e., least-squares) measure of fit, and we are able to directly attain an updated θ

via the normal equation, which is an analytical solution to the least-squares regression

problem. However, our NN-API algorithm employs a more complicated NN model to

approximate the value function, and to attain an updated Θ we must minimize the

loss function L(Θ) via computational methods. The new sample estimate of Θ,

Θ̂ = arg min
Θ

L(Θ), (42)

is determined using MATLAB’s fminunc optimization routine, which employs a New-

ton’s method solution procedure with a trust-region method modification. The so-

lution procedure requires gradient information, and we utilize the conventional NN
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back-propagation approach to compute the gradient. The applicable derivatives can

be calculated via the chain rule for differentiation and are given by

∂Lj

∂Θ
(2)
h

= −
1

J

(
v̂j − V̄ x(Sxt−1,j |Θ)

)
σ′

(
Y (3)(Sxt−1,j)

)
Z

(2)
h (Sxt−1,j) +

η

J
Θ

(2)
h , (43)
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= −
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)
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h σ′

(
Y
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J
Θ

(1)
f,h, (44)

wherein σ′(y) denotes the first-order derivative of σ(y) with respect to y. Once Θ̂ is

computed, we utilize the polynomial stepsize rule, Equation (32), to smooth in the

input layer Θ̂(1)-weights and hidden layer Θ̂(2)-weights with the previous estimates

Θ(1) and Θ(2), respectively. We then update Θ as follows

Θ(i) ← αnΘ̂(i) + (1− αn)Θ(i), for i = 1, 2, (45)

wherein the Θ(i) on the right hand side is the prior estimate based on the previous

n − 1 policy improvement iterations and Θ̂(i) is our new estimate from the current

policy improvement iteration for each i = 1, 2. As the number of policy improvement

iterations n increases, we place less emphasis on recent sample estimates and more

emphasis on the estimate based on the first n− 1 iterations.

Once Θ is updated via Equation (45), we have completed one iteration of the policy

improvement phase of the NN-API algorithm. If n < N then the algorithm continues

by starting another policy evaluation phase. The parameters N , J , |H|, η, and β

are tunable, where N is the number of iterations of the policy improvement phase,

J is the number of iterations of the policy evaluation phase, |H| is the number of

hidden layer units considered, η is the regularization term within the sample estimate

computation, and β is the polynomial stepsize parameter.
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3.6 Testing, Analysis, & Results

In this section, we develop and utilize a representative military medical evacua-

tion (MEDEVAC) planning scenario to demonstrate the applicability of our Markov

decision process (MDP) model to the military medical planning community and to

examine the efficacy of our proposed approximate dynamic programming (ADP) solu-

tion techniques. We design and conduct computational experiments to examine how

different algorithmic parameter settings and different features of the MEDEVAC dis-

patching problem impact the performance of our proposed ADP solution techniques.

Moreover, we perform a series a sensitivity analyses on specific problem and algorith-

mic features to obtain insight regarding current MEDEVAC initiatives. We utilize

a dual Intel Xeon E5-2650v2 workstation having 128 GB of RAM and MATLAB’s

Parallel Computing Toolbox to conduct the computational experiments and analyses

herein.

We develop a notional, representative military MEDEVAC planning scenario in

which the US military is performing high-intensity combat operations in support of

the government of Azerbaijan. Our planning scenario considers two main operating

bases (i.e., bases that host both a medical treatment facility (MTF) and a MEDEVAC

staging area) and two forward operating bases (bases that only host a MEDEVAC

staging area) in southern Azerbaijan. Moreover, we develop and consider a set of

casualty cluster centers based on the projected locations of both friendly and enemy

forces. Figure 8 depicts the two main operating bases, the two forward operating

bases, and the 55 casualty cluster centers that we consider for our representative

military MEDEVAC planning scenario.

The baseline problem instance considers a 9-line MEDEVAC request arrival rate

of λ = 1
30

. That is, we assume an average 9-line MEDEVAC request arrival rate of

one request per 30 minutes. Moreover, we assume that the MEDEVAC system em-
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Figure 8. Representative Military MEDEVAC Planning Scenario Disposition

ploys an inter-zone policy regarding airspace access, allowing any MEDEVAC unit to

service any request regardless of the casualty collection point (CCP) location. We set

the baseline proportions of urgent, priority, and routine requests to 0.7, 0.2, and 0.1,

respectively, (i.e., P(urgent, priority, routine) = (0.7, 0.2, 0.1)) to portray a highly ki-

netic conflict that results in more life-threatening engagements between hostile forces.

We utilize data provided by Fulton et al. (2010) to determine the number of casual-

ties contained in each 9-line MEDEVAC request. As such, the proportion of 9-line

MEDEVAC requests that have one, two, three, and four casualties are 0.574, 0.36,

0.05, and 0.016, respectively. The proportion of 9-line MEDEVAC requests originat-

ing from a particular casualty cluster center depends on the casualty cluster center’s

location. For the baseline problem instance, we consider casualty events more likely

to occur in the south (i.e., L = south). We let w1, w2, and w3 equal 1, 0.1, and 0.01,

respectively, to prioritize urgent requests more than priority requests and priority
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requests more than routine requests. We utilize a relatively high discount factor of

γ = 0.999 (i.e., exhibiting relatively low discounting of future epochs’ operational

values) in our computational experiments to incentivize the system to position itself

to efficiently respond to future service requests. Lastly, we set qmax = 5, which allows

the system to hold at most five 9-line MEDEVAC requests in the queue at any given

time.

Our computational experiments measure ADP performance as the percent increase

of total discounted reward obtained over an infinite horizon as compared to that

obtained via the default dispatching policy in practice (i.e., closest-available policy).

The closest-available policy tasks the closest-available MEDEVAC unit to respond to

service requests regardless of other factors (e.g., precedence, demand distribution, and

request arrival rate). Note that, since we cannot simulate an infinite trajectory, we

instead simulate a 10,000-minute trajectory to produce a reasonable approximation.

Moreover, because we are discounting, the γτt-term in our objective function becomes

small enough that a longer simulation does not impact the measure of performance.

The performance and computational efficiency of each of our proposed ADP solu-

tion techniques vary based on different problem and algorithmic features. The prob-

lem features of interest include the average 9-line MEDEVAC request arrival rate,

λ; the location in which requests are most likely to occur, L; and the proportions

of urgent, priority, and routine requests, P(urgent, priority, routine). The algorith-

mic features of interest for our least-squares temporal differences approximate policy

iteration (LSTD-API) algorithm include the number of policy improvement phase

iterations, N ; the number of policy evaluation phase iterations, J ; the regularization

term within the sample estimate computation, η; and the polynomial stepsize param-

eter, β. For our LSTD-API experimental design, we utilize a third-order polynomial

of the basis functions to approximate the post-decision state value function. The
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algorithmic features of interest for our neural network approximate policy iteration

(NN-API) algorithm include the number of policy improvement phase iterations, N ;

the number of policy evaluation phase iterations, J ; the number of hidden layer units

considered, |H|; the regularization term within the sample estimate computation, η;

and the polynomial stepsize parameter, β.

We generate 30 distinct problem instances utilizing a full factorial experimental

design comprised of the λ, L, and P(urgent, priority, routine) problem factors (i.e.,

features). For each problem instance, we design and implement both a 34 full factorial

computational experiment to examine the solution quality of policies determined by

our LSTD-API algorithm for different levels of N , J , η, and β and a 35 full factorial

computational experiment to examine the solution quality of policies determined by

our NN-API algorithm. Table 4 shows the problem factor levels utilized in the ex-

perimental design to generate the 30 problem instances as well as the factor levels

utilized in the computational experimental designs to determine solution quality for

the two ADP algorithms. The selected parameter settings (i.e., factor levels) for the

algorithmic features are based on our initial experiences and investigations with each

ADP solution technique for this problem class. For each experimental design point

(i.e., combination of factor levels), we perform 100 simulation runs to achieve our

desired level of confidence. These experiments inform the selection of appropriate

algorithm parameter values for subsequent sensitivity analyses. Moreover, these ex-

periments provide a general insight regarding the performance of our ADP algorithms

for high-intensity MEDEVAC dispatching problem instances.

Table 5 summarizes the results from our computational experiments by report-

ing the best parameter settings with regards to each ADP solution technique’s per-

formance for each problem instance. Starting from the left, Columns 1-3 indicate

the problem factor levels associated with each problem instance. Columns 4-7 and
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Table 4. Experimental Design Factor Levels

Category Feature Parameter Settings

Problem Instance

1
λ

{10, 20, 30, 40, 50}
L {south, east, west}

P(urgent, priority, routine) {(0.7, 0.2, 0.1), (0.5, 0.4, 0.1)}

LSTD-API

N {5, 10, 15}
J {1000, 5000, 10000}
η {10, 100, 1000}
β {0.5, 0.7, 0.9}

NN-API

N {5, 10, 15}
J {1000, 5000, 10000}
|H| {3, 5, 7}
η {0.001, 0.01, 0.03}
β {0.5, 0.7, 0.9}

Columns 8-12 tabulate the superlative parameter settings for the LSTD-API and

NN-API algorithms, respectively, for each problem instance. Columns 13 and 14 re-

spectively report the attendant solution qualities of the ADP policies determined by

the LSTD-API and NN-API algorithms for each problem instance. The solution qual-

ities of the ADP policies provide a measure of algorithm efficacy and are expressed in

terms of the 95% confidence interval of percent improvement over the closest-available

policy with respect to total discounted reward over an approximated infinite horizon.

The last two columns report the computational efficiency of the LSTD-API and NN-

API algorithms, respectively, as measured by the time required to generate a policy

using the superlative parameter settings.

The results from Table 5 indicate that the ADP policies determined by the LSTD-

API and NN-API algorithms significantly outperform the closest-available benchmark

policies in 24 and 27 of the 30 problem instances examined, respectively. The ADP

policies perform best in high-intensity conflicts wherein the average request arrival

rate is relatively high (e.g., 1
λ
≤ 30 for this scenario). For example, the policies

determined by our NN-API algorithm attain performances up to 346.56%, 144.03%,

and 28.6% for the 1
λ

= 10, 1
λ

= 20, and baseline 1
λ

= 30 problem instances, respectively.

81



Table 5. Experimental Design Results

Problem Instance LSTD-API NN-API Improvement Over Computational
Parameter Settings Parameter Settings Parameter Settings Closest-Available Policy (%) Efficiency (Minutes)

1
λ

L P(urgent, priority, routine) N J η β N J |H| η β LSTD-API NN-API LSTD-API NN-API
10 south (0.7, 0.2, 0.1) 15 1000 1000 0.7 15 10000 3 0.03 0.9 138.90 ± 0.40 329.80 ± 0.40 7.79 100.59
10 south (0.5, 0.4, 0.1) 5 1000 1000 0.5 10 10000 3 0.01 0.5 142.84 ± 0.37 346.56 ± 0.45 2.49 76.44
10 east (0.7, 0.2, 0.1) 10 1000 1000 0.9 15 10000 3 0.001 0.7 123.35 ± 1.17 275.02 ± 0.58 4.26 112.21
10 east (0.5, 0.4, 0.1) 10 1000 1000 0.7 10 10000 3 0.03 0.5 149.70 ± 0.49 283.67 ± 0.62 4.05 68.62
10 west (0.7, 0.2, 0.1) 15 1000 1000 0.9 5 5000 3 0.001 0.7 169.75 ± 0.72 325.64 ± 0.86 6.39 26.38
10 west (0.5, 0.4, 0.1) 5 1000 1000 0.5 10 10000 3 0.01 0.5 66.34 ± 0.27 167.28 ± 0.32 1.99 61.78
20 south (0.7, 0.2, 0.1) 10 1000 1000 0.9 15 5000 3 0.03 0.7 81.70 ± 0.60 123.90 ± 0.80 5.86 56.51
20 south (0.5, 0.4, 0.1) 10 1000 1000 0.9 15 10000 3 0.03 0.5 45.14 ± 0.16 85.82 ± 0.11 4.40 86.33
20 east (0.7, 0.2, 0.1) 10 1000 1000 0.5 15 10000 3 0.01 0.7 66.34 ± 0.93 87.84 ± 0.84 4.64 89.55
20 east (0.5, 0.4, 0.1) 10 1000 1000 0.5 15 10000 3 0.03 0.5 113.26 ± 0.18 144.03 ± 0.12 3.84 95.11
20 west (0.7, 0.2, 0.1) 10 1000 1000 0.7 10 10000 3 0.03 0.5 86.63 ± 0.84 121.29 ± 1.06 4.45 64.55
20 west (0.5, 0.4, 0.1) 10 1000 1000 0.7 15 10000 3 0.03 0.7 88.20 ± 0.28 117.45 ± 0.30 4.48 92.81
30 south (0.7, 0.2, 0.1) 15 1000 1000 0.9 10 10000 5 0.001 0.5 11.50 ± 0.70 24.20 ± 0.70 8.74 110.59
30 south (0.5, 0.4, 0.1) 5 1000 1000 0.9 15 10000 3 0.01 0.5 6.17 ± 0.31 16.17 ± 0.35 1.85 75.97
30 east (0.7, 0.2, 0.1) 5 1000 1000 0.7 10 10000 3 0.001 0.7 6.75 ± 0.63 13.37 ± 0.70 1.92 69.25
30 east (0.5, 0.4, 0.1) 10 1000 1000 0.5 15 10000 5 0.001 0.7 2.66 ± 0.05 9.97 ± 0.10 3.75 188.54
30 west (0.7, 0.2, 0.1) 10 1000 1000 0.9 5 10000 3 0.03 0.9 21.45 ± 0.49 28.60 ± 0.54 3.79 31.16
30 west (0.5, 0.4, 0.1) 10 1000 1000 0.7 5 10000 3 0.03 0.5 12.90 ± 0.05 20.85 ± 0.03 3.78 34.39
40 south (0.7, 0.2, 0.1) 5 1000 1000 0.9 10 5000 3 0.03 0.5 0.52 ± 0.33 6.14 ± 0.60 2.07 26.68
40 south (0.5, 0.4, 0.1) 10 10000 1000 0.7 15 10000 3 0.001 0.5 3.36 ± 0.09 12.57 ± 0.04 43.51 110.45
40 east (0.7, 0.2, 0.1) 10 1000 1000 0.5 15 10000 3 0.01 0.7 1.04 ± 0.73 3.43 ± 0.71 4.66 81.78
40 east (0.5, 0.4, 0.1) 15 1000 1000 0.7 15 10000 3 0.03 0.7 54.67 ± 0.53 58.84 ± 0.56 6.80 86.55
40 west (0.7, 0.2, 0.1) 10 1000 1000 0.7 5 10000 3 0.03 0.7 2.24 ± 0.45 6.53 ± 0.48 4.70 30.50
40 west (0.5, 0.4, 0.1) 10 1000 1000 0.9 15 10000 3 0.01 0.5 7.43 ± 0.31 10.72 ± 0.30 4.38 81.38
50 south (0.7, 0.2, 0.1) 10 1000 1000 0.5 15 10000 7 0.001 0.7 -2.20 ± 0.56 1.36 ± 0.64 4.01 263.76
50 south (0.5, 0.4, 0.1) 10 1000 1000 0.5 15 5000 7 0.01 0.7 -29.55 ± 0.23 -25.61 ± 0.22 3.95 168.95
50 east (0.7, 0.2, 0.1) 10 1000 1000 0.7 10 10000 3 0.001 0.7 -0.37 ± 0.76 1.65 ± 0.75 4.45 71.76
50 east (0.5, 0.4, 0.1) 5 1000 1000 0.7 15 10000 5 0.03 0.5 -13.98 ± 0.05 -11.94 ± 0.04 2.17 117.23
50 west (0.7, 0.2, 0.1) 5 5000 10 0.9 10 5000 5 0.001 0.7 -0.73 ± 0.61 1.77 ± 0.63 11.21 66.04
50 west (0.5, 0.4, 0.1) 15 5000 100 0.9 10 10000 3 0.03 0.9 -25.78 ± 0.54 -24.07 ± 0.54 34.42 60.19

In general, as the average request arrival rate decreases (i.e., as 1
λ

increases), the

performance of the ADP policies relative to the closest-available policy decreases.

This result is intuitive and comports with the findings from previous related work

(e.g., Rettke et al. (2016)). When the request arrival rate is relatively low, the

dispatching authority accepts less risk by sending the closest-available MEDEVAC

because the just-dispatched MEDEVAC unit is very likely to return to its own staging

area prior to the arrival of another request. Accordingly, implementing an ADP

policy in low-intensity conflicts wherein the average request arrival rate is relatively

low (e.g., 1
λ
> 30 for this scenario) will likely yield little-to-no performance gain over

the closest-available policy. Indeed, for low-intensity conflicts, the closest-available

policy is likely optimal.

Although the relative performance improvements attained by the ADP policies di-

minish as 1
λ

increases, we still expect both of our ADP algorithms to generate policies

that perform at least as well as the closest-available policy, even with low MEDEVAC

request arrival rates. However, upon examination of the last six problem instances in
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Table 3 (i.e., when 1
λ

= 50), we observe that the closest-available policy significantly

outperforms the policies generated from both of our ADP algorithms when P(urgent,

priority, routine) = (0.5, 0.4, 0.1). This result suggests that the algorithmic parame-

ter settings should be tuned via a focused experimental design specifically to address

problem instances having a low request arrival rate and a lesser number of urgent

requests entering the system. Theoretically, after determining proper algorithmic pa-

rameter settings for this subclass of problem instances, the ADP algorithms should

produce policies that perform at least as well as the closest-available policy.

To illustrate the benefits of an ADP policy in high-intensity conflict situations, we

discuss the limitations of the closest-available policy. Consider the following three sce-

narios: reserve, wait, and reject. For the reserve scenario, we consider a system state

wherein two MEDEVAC units are available for dispatch and a routine request from a

high demand area has just been submitted to the system, which is shortly followed by

an urgent request submission from the same area. Under the closest-available policy,

the closest-available MEDEVAC unit is dispatched to the routine request. As such,

the more distant MEDEVAC unit is dispatched to the subsequent urgent request.

Clearly this sequence of events and actions is suboptimal since a higher reward is

attained when the closest-available MEDEVAC unit is reserved for the urgent re-

quest and the more distant MEDEVAC unit is dispatched to the routine request. For

the wait scenario, we consider a system state wherein a distant MEDEVAC unit is

available for dispatch, one MEDEVAC unit is almost done servicing casualties from

a previous request, and a request near the servicing MEDEVAC has just been sub-

mitted to the system. Under the closest-available policy, the available (but distant)

MEDEVAC unit is dispatched to service the submitted request, which results in a

lower reward attained by the system when compared to queueing the submitted re-

quest, waiting for the servicing MEDEVAC to become available, and assigning it to
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the queued submitted request. For the reject scenario, we consider a system state

wherein a single MEDEVAC unit is available for dispatch in a high-demand area

from where a high volume of urgent requests originate and a routine request near the

available MEDEVAC unit is submitted to the system, which is shortly followed by

an urgent request submission from the same area. Under the closest-available policy,

the available MEDEVAC unit is dispatched to service the routine request leaving no

available MEDEVAC units available to service the subsequent urgent request. This

action results in a lower reward attained by the system when compared to rejecting

the routine request from entering the system in anticipation of needing the MEDE-

VAC unit for the subsequent urgent request. Unlike the closest-available policy, the

policies derived from our proposed ADP solution techniques utilize problem features

to make decisions based on current and future events, resulting in better decisions

and ultimately higher performance returns.

We observe that the superlative policies generated by the NN-API algorithm sig-

nificantly outperform the superlative policies generated by the LSTD-API algorithm

for each problem instance examined. This result can be explained due to the large

number of free parameters (i.e., function mapping weights) embedded within the NN-

API algorithm, which gives it the ability to more accurately fit highly complex data

than other algorithms (e.g., LSTD-API). Unfortunately, the large number of free pa-

rameters also makes the NN-API algorithm a highly complex model that requires

more computational running time than the LSTD-API algorithm. The results from

the last two columns in Table 5 indicate that the LSTD-API algorithm is approx-

imately 12 times faster than the NN-API algorithm, on average, when computing

the top parameter settings for each problem instance. Even so, it is important to

note that, once a satisfactory set of parameter settings is determined, MEDEVAC

dispatching decisions can be computed nearly instantaneously.
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We next compare the best performing NN-API algorithm policies to the closest-

available policies for different MEDEVAC platforms and report the results in Tables

6-8. Except when otherwise noted, we utilize the baseline problem instance (i.e.,

1
λ

= 30, L = south, and P(urgent, priority, routine) = (0.7, 0.2, 0.1)) when performing

the following analyses. The United States Army and United States Air Force respec-

tively employ HH-60M Blackhawks and HH-60G Pave Hawks to conduct MEDEVAC

missions. However, the Department of Defense (DoD) is aggressively pursuing the

development of new rotary wing aircraft that are more capable to perform safe, reli-

able, and continuous operations worldwide (e.g., MEDEVAC missions) via the Future

Vertical Lift (FVL) program (Drezner et al., 2017). The primary competitors for the

FVL program are the Sikorsky-Boeing 1 (SB-1) Defiant and the Bell V-280 Valor.

For comparison purposes, we consider the HH-60M closest-available policy data as

our baseline case.

Starting from the left in Table 6, the first column indicates the MEDEVAC plat-

form. The second column indicates the assumed aircraft speed in knots per hour

(kph). Column three indicates the estimated cost per unit. Columns four and five

respectively indicate the 95% confidence intervals of the performances for the NN-

API and closest-available policies in terms of percent improvement over the baseline

case. The last two columns respectively indicate the 95% confidence intervals of the

MEDEVAC busy rates for the NN-API and closest-available policies.

Table 6. Dispatching Policy Performance Measures for the Selected MEDEVAC Plat-
forms

Improvement Over MEDEVAC
HH-60M Baseline (%) Busy Time (%)

Platform Speed (kph) Unit Cost ($M) NN-API Closest-Available NN-API Closest-Available
HH-60M Blackhawk* 280 21.3 24.2 ± 0.7 - 97.4 ± 0.3 99.7 ± 0.1
HH-60G Pave Hawk 294.5 40.1 27.6 ± 0.7 5.7 ± 0.1 96.7 ± 0.3 99.7 ± 0.1
SB-1 Defiant 463 38 53.3 ± 0.8 47.4 ± 0.5 96.7 ± 0.3 99.7 ± 0.1
V-280 Valor 518.6 20 59.3 ± 0.8 54.8 ± 0.7 98.7 ± 0.2 99.7 ± 0.1
*Current platform employed by US Army.

The results from Table 6 indicate that, as airspeed increases, the overall perfor-
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mance for both NN-API and closest-available policies increases. Moreover, as air-

speed increases the performance gap between NN-API and closest-available policies

decreases. The last two columns reveal that the NN-API policies have significantly

better (i.e., lower) MEDEVAC busy rates than the closest-available policies. How-

ever, we can observe that the differences in MEDEVAC busy rates have little-to-no

practical significance since they are all nearly 100%. The MEDEVAC busy rates for

both NN-API and closest-available policies are high in all cases due to the relatively

high average MEDEVAC request arrival rate (i.e., λ = 1
30

). As mentioned previously,

the SB-1 Defiant and V-280 Valor are currently competing against each other in the

DoD’s FVL program. While the official price per unit of the SB-1 Defiant is difficult

to predict at this point in the research, development, and acquisition process, a fully

burdened version of the SB-1 Defiant is currently estimated to be around $38M-$41M

(Koucheravy, 2018). However, it is important to note that the estimate of the SB-1

Defiant is based on a number of assumptions and planning factors and most likely will

be reduced after the final set of requirements are produced. Moreover, Bell has stated

that it can offer the V-280 Valor for just $20 million per unit, which is substantially

less than the current estimate of the SB-1 Defiant (Adams, 2016). The unit costs

reported in column three in Table 6 are provided to give decision makers a rough

idea as to how each platform performs with its currently estimated cost. To further

investigate how each MEDEVAC platform impacts performance, we next examine

response times.

Starting from the left in Table 7, the first column indicates the MEDEVAC plat-

form. The second and third columns respectively indicate the 95% confidence intervals

of the urgent request response times for the NN-API and closest-available policies.

Columns four and five respectively indicate the 95% confidence intervals for the pri-

ority request response times for the NN-API and closest-available policies. The last
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two columns respectively indicate the 95% confidence intervals of the routine request

response times for the NN-API and closest-available policies.

Table 7. Dispatching Policy Response Times by Precedence Level for the Selected
MEDEVAC Platforms

Urgent Priority Routine
Response Time (Hours) Response Time (Hours) Response Time (Hours)

Platform NN-API Closest-Available NN-API Closest-Available NN-API Closest-Available
HH-60M Blackhawk 0.90 ± 0.003 1.55 ± 0.1 0.79 ± 0.03 3.43 ± 0.4 0.83 ± 0.02 17.83 ± 2.7
HH-60G Pave Hawk 0.89 ± 0.003 1.44 ± 0.1 0.76 ± 0.01 3.05 ± 0.4 0.79 ± 0.05 14.37 ± 2.4
SB-1 Defiant 0.71 ± 0.002 0.86 ± 0.1 0.65 ± 0.01 1.13 ± 0.1 0.63 ± 0.02 3.45 ± 1.3
V-280 Valor 0.70 ± 0.002 0.79 ± 0.1 0.69 ± 0.01 0.96 ± 0.1 0.69 ± 0.01 2.60 ± 1.0

The results from Tables 6 and 7 show that, as airspeed increases, the response

times decrease for all precedence categories for the closest-available policies. For the

NN-API policies, this trend also holds for the urgent request response times but not

for the priority or routine request response times. The gaps in response times between

NN-API and closest-available policies decrease as airspeed increases. Moreover, we

observe that the response times for the NN-API policies are significantly lower than

the response times for the closest-available policies. This relationship can be explained

in part by the NN-API algorithm having an admission control policy that allows the

dispatching authority to reject incoming requests from entering the system, whereas

the closest-available policy must service incoming requests if at least one MEDEVAC

unit is available. We display the rejection rates of the NN-API and closest-available

policies for each MEDEVAC platform in Table 8.

Within Table 8, the first column indicates the MEDEVAC platform. The second

and third columns respectively indicate the 95% confidence intervals of the urgent

request rejection rates for the NN-API and closest-available policies. Columns four

and five respectively indicate the 95% confidence intervals for the priority request

rejection rates for the NN-API and closest-available policies. Columns six and seven

respectively indicate the 95% confidence intervals for the routine request rejection

rates for the NN-API and closest-available policies. The last two columns respectively
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indicate the 95% total rejection rate confidence intervals for the NN-API and closest-

available policies.

Table 8. Dispatching Policy Rejection Rates by Precedence Level for the Selected
MEDEVAC Platforms

Urgent Priority Routine Total
Rejection Rate (%) Rejection Rate (%) Rejection Rate (%) Rejection Rate (%)

Platform NN-API Closest-Available NN-API Closest-Available NN-API Closest-Available NN-API Closest-Available
HH-60M Blackhawk 7.1 ± 0.3 33.9 ± 3.8 76.7 ± 1.0 35.0 ± 4.0 89.0 ± 2.9 39.7 ± 4.7 29.0 ± 0.5 34.7 ± 3.8
HH-60G Pave Hawk 5.3 ± 0.3 30.9 ± 3.8 76.5 ± 1.1 31.8 ± 4.1 97.3 ± 0.5 34.5 ± 4.5 28.8 ± 0.5 31.4 ± 3.9
SB-1 Defiant 3.5 ± 0.2 6.0 ± 2.5 62.7 ± 1.1 6.1 ± 2.6 96.3 ± 0.6 6.6 ± 2.8 24.7 ± 0.4 6.1 ± 2.6
V-280 Valor 1.3 ± 0.2 4.3 ± 2.1 20.8 ± 1.0 4.2 ± 2.1 93.4 ± 1.0 4.8 ± 2.4 10.7 ± 0.3 4.3 ± 2.1

The results from Tables 6 and 8 show that, as airspeed increases, the rejection

rates decrease for all precedence categories for the closest-available policies. For NN-

API policies, this relationship also holds for the urgent and priority request rejection

rates but not for the routine request rejection rates. The gaps in rejection rates be-

tween NN-API and closest-available policies decrease as airspeed increases. Moreover,

we observe that the urgent rejection rates for the NN-API policies are significantly

lower than the urgent rejection rates for the closest-available policies. The opposite is

true for priority and routine requests. These results reveal that the NN-API policies

reject more priority and routine requests than the closest-available policies to allow

for a higher number of urgent requests to be serviced. This result is intuitive since the

reward attained by the MEDEVAC system for servicing urgent requests is substan-

tially higher than servicing priority or routine requests, and there is a much higher

proportion of urgent requests (i.e., 0.7) arriving to the system compared to priority

requests (i.e., 0.2) and routine requests (i.e., 0.1). The last two columns in Table

8 show that the overall rejection rate for the HH-60M is significantly lower under

the NN-API policy when compared against the closest-available policy. Moreover,

there is not a statistically significant difference in the overall rejection rates between

the NN-API and closest-available policies for the HH-60G Pave Hawk. However, the

overall rejection rates for the FVL platforms (i.e., SB-1 Defiant and V-280 Valor)

are significantly higher for NN-API policies when compared against closest-available
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policies. While these higher rejection rates may not align with expectations, admit-

ting more priority and routine requests to the system will ultimately lead to longer

urgent request response times since more MEDEVAC units will be busy servicing

lower precedence requests. Hence, some rejection is desirable as it reserves dedicated

MEDEVAC units for more life-threatening requests. It is important to recall that

rejected requests are not simply discarded; they are redirected and serviced by non-

medical command authorities aboard non-medical, combat support transportation

assets (e.g., CASEVAC).

The results from Tables 6-8 demonstrate that NN-API policies have diminishing

returns when compared to closest-available policies as airspeed increases. Even so,

military medical planners should still consider the value of ADP policies and the

high-quality dispatching solutions they have to offer.

3.7 Conclusions

This chapter examines the medical evacuation (MEDEVAC) dispatching problem.

The intent of this research is to determine dispatching policies that improve the per-

formance of a deployed Army MEDEVAC system and ultimately decrease the case

fatality rate (i.e., percentage of fatalities among all combat casualties). We developed

a discounted, infinite-horizon Markov decision process (MDP) model of the MEDE-

VAC dispatching problem, which enables examination of a variety of problem features

relating to different military medical planning scenarios. Whereas the MDP model

provides an appropriate framework for solving the MEDEVAC dispatching problem,

the large size of our motivating problem instances required the design, development,

and implementation of approximate dynamic programming (ADP) techniques to solve

the problem in a tractable amount of time. As such, we developed and tested two

ADP solution techniques that both utilize an approximate policy iteration (API)
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algorithmic framework. The first ADP solution technique considers least-squares

temporal differences (LSTD) learning for policy evaluation, whereas the second ADP

solution technique considers neural network (NN) learning for policy evaluation. Uti-

lizing selected MEDEVAC dispatching problem features, we defined a set of basis

functions to approximate the value function around the post-decision state for both

of our proposed ADP solution techniques. We constructed a notional, representative

planning scenario based on high-intensity combat operations in southern Azerbaijan

to demonstrate the applicability of our MDP model and to examine the efficacy of

our proposed ADP solution techniques.

The results from our computational experiments indicate that the respective poli-

cies generated by the NN-API and LSTD-API algorithms significantly outperform

the closest-available benchmark policies in 27 (90%) and 24 (80%) of the 30 problem

instances examined. Furthermore, the policies derived from the best NN-API param-

eter settings have performances that are significantly higher than the performances

from policies derived from the best LSTD-API parameter settings. The advantage of

NN-API results from its nonlinear architecture of nonlinear activation functions that

can be effectively trained in an iterative manner, but this advantage comes at the

cost of substantially increased computational time. Even so, the computational time

required for the NN-API algorithm is not large enough to set it aside from consider-

ation as a viable solution technique. We also determined that NN-API policies have

diminishing returns when compared to closest-available policies as airspeed increases.

This research is of interest to both military and civilian medical planners. Med-

ical planners can apply our MDP model and ADP solution techniques to compare

different dispatching policies for a variety of planning scenarios that have fixed medi-

cal treatment facility and MEDEVAC staging locations (i.e., hospital and ambulance

locations for the civilian sector). Moreover, medical planners can evaluate different
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location schemes for medical assets to determine the best allocation of resources if

they are not already fixed or the emplacement of new assets is being considered. Al-

though implementing an ADP policy into active dispatching operations may require

the use of a decision support system to alleviate the burden to a dispatcher, the point

of this research is to show that the closest-available dispatching policy is not always

superlative and that there exist operations research techniques that may improve

MEDEVAC system performance.

Of the MEDEVAC platforms examined, the FVL V-280 Valor performance is

superlative, an expected result due to its airspeed. Both the military medical planning

community and the military acquisition community (i.e., those personnel responsible

for implementing new technology into the military) can leverage the results from this

research to examine how the currently employed MEDEVAC platforms (i.e., HH-60M

Blackhawk and HH-60G Pave hawk) and the currently competing FVL platforms (i.e.,

SB-1 Defiant and V-280 Valor) compare in a high-intensity, representative planning

scenario. Such comparisons inform the implementation and modification of current

and future MEDEVAC tactics, techniques, and procedures, as well as the design and

purchase of future aerial MEDEVAC assets.
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IV. Approximate Dynamic Programming for the Military
Aeromedical Evacuation Dispatching,

Preemption-Rerouting, and Redeployment Problem

4.1 Introduction

A fundamental objective of the military’s health service support system is to en-

sure effective and efficient delivery of healthcare across the continuum of military

operations. It is important for senior military leaders and medical planners to contin-

uously seek enhanced healthcare methods to eliminate current shortfalls and satisfy

future requirements. In particular, the enhancement of the treatment and evacuation

of combat casualties to medical treatment facilities (MTFs) is a key objective of the

United States (US) Army (Department of the Army, 2016). It is well known that

effective evacuation of combat casualties relies heavily on the reduction of time be-

tween injury and treatment (Kotwal et al., 2016; Howard et al., 2018). To improve

combat casualty survivability, the military’s health service support system utilizes

aeromedical evacuation (MEDEVAC) as the primary link between roles of medicare

care on the battlefield since it is comprised of dedicated, standardized air evacu-

ation platforms designed, equipped, and staffed to rapidly respond to requests for

medical support during combat operations and provide necessary en route care to

casualties being delivered to an appropriate MTF (Department of the Army, 2016).

This chapter leverages operations research and machine learning techniques to deter-

mine high-quality MEDEVAC policies that increase the effectiveness and efficiency

of deployed US Army MEDEVAC systems.

As a critical component of deployed military forces, MEDEVAC systems serve as

a force multiplier, providing the necessary connectivity between roles of medical care.

Effective and efficient MEDEVAC systems utilize limited assets, minimize long term

injuries, and maximize casualty survivability rates by ensuring the highest levels of
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medical care are available when needed. Moreover, MEDEVAC systems that provide

prompt evacuation and timely critical care of casualties raise morale of deployed

military personnel, ultimately improving the effectiveness of operational combat units

by demonstrating medical assistance is quickly available upon request (Department

of the Army, 2016). Several important decisions must be considered when designing

a MEDEVAC system. These decisions include: where to locate MEDEVAC staging

facilities, how many MEDEVAC units (i.e., aeromedical helicopters) to allocate to

each staging facility, which MEDEVAC unit to assign (i.e., dispatch or preempt-and-

reroute) to respond to a request for service, and where a MEDEVAC unit redeploys

after transferring casualty care to an MTF’s staff.

Given a set of fixed staging facilities and MTFs as well as a predefined alloca-

tion of MEDEVAC units to each staging facility, the identification of a policy that

determines which MEDEVAC units to assign to respond to requests for service and

where MEDEVAC units redeploy after finishing a service request (i.e., upon success-

ful transfer of casualty care to an MTF’s staff), herein referred to as the MEDEVAC

dispatching, preemption-rerouting, and redeployment (DPR) problem, is vital to the

success of a deployed MEDEVAC system and is the primary focus of this chapter.

The US military typically utilizes a closest-available dispatching policy, which assigns

the closest-available MEDEVAC unit to respond to a request for service, regardless

of the request’s characteristics (e.g., location and severity) or the MEDEVAC system

state (e.g., location and availability of MEDEVAC units), and it does not consider

MEDEVAC unit redeployment (i.e., MEDEVAC units return to their home staging

facilities after completing a service request). Besides the lack of redeployment, one of

the primary drawbacks of this policy is that it only allows idle MEDEVAC units (i.e.,

MEDEVAC units awaiting mission tasking at their staging facility) to be dispatched

in response to incoming requests for service. Moreover, although the closest-available
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dispatching policy may perform well in low intensity conflicts wherein the average

arrival rate of MEDEVAC requests is low (e.g., one request every two hours), many

researchers (e.g., Keneally et al. (2016), Rettke et al. (2016), and Jenkins et al. (2018))

have shown that, as the average arrival rate of requests increases (e.g., in high in-

tensity conflicts), policies that disregard important information concerning incoming

requests and the state of the system, such as the closest-available dispatching policy,

perform poorly.

The objective of this research is to generate high-quality policies that dispatch,

preempt-and-reroute, and redeploy MEDEVAC units in a way that improves upon

the currently practiced closest-available dispatching policy for large-scale, highly ki-

netic, and intense military conflicts. A discounted, infinite-horizon Markov decision

process (MDP) model of the MEDEVAC DPR problem is formulated and solved via

an approximate dynamic programming (ADP) strategy that utilizes a support vector

regression (SVR) value function approximation scheme within an approximate policy

iteration (API) framework. The objective is to maximize expected total discounted

reward attained by the system. The locations of MEDEVAC staging facilities and

MTFs are known, as is the allocation of MEDEVAC units to each staging facility.

Moreover, it is assumed that each MEDEVAC unit has the capability to satisfy the

mission requirements of any request for service.

Indeed, the literature on civilian and military emergency medical service (EMS)

response systems is quite rich and, as such, only highly related papers that incor-

porate ADP strategies are discussed; for an extensive review of related literature

see Swersey (1994), Brotcorne et al. (2003), Ingolfsson (2013), and Aringhieri et al.

(2017). ADP research involving civilian EMS systems primarily focuses on ambu-

lance redeployment, relocation, and dispatching. Maxwell et al. (2010) solve the

ambulance redeployment problem (i.e., determining to where ambulances are moved
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after completing service at a hospital) via a least-squares policy evaluation (LSPE)

value function approximation scheme within an API algorithmic framework. Schmid

(2012) considers both ambulance dispatching and redeployment. The author utilizes

a spatial and temporal aggregation value function approximation scheme within an

approximate value iteration algorithmic framework to develop ambulance dispatch-

redeployment policies. Lastly, Nasrollahzadeh et al. (2018) consider an ADP solution

methodology for ambulance dispatching, relocation, and redeployment decisions. Sim-

ilar to Maxwell et al. (2010), the authors employ an ADP strategy that utilizes an

LSPE value function approximation scheme within an API algorithmic framework.

The effectiveness of these ADP strategies is demonstrated via applications to EMS

response scenarios, of which, all ADP strategies show improvements over benchmark

policies.

While similarities between civilian and military EMS response systems do exist,

there also exists substantive differences that require consideration when examining

the performance of a military-specific EMS response system. For example, the travel,

load, and unload times are much greater during military MEDEVAC operations due

to the complex nature of each mission (e.g., threat level concerns, number and severity

of casualties, and remote terrain areas) (Jenkins et al., 2018). Moreover, most civilian

EMS response systems enforce a response time threshold (RTT) of nine minutes or

less, so service preemption is typically not modeled because, in doing so, computa-

tional complexity significantly increases while only providing a marginal benefit to

system performance (Maxwell et al., 2010). Such moderate improvement is not the

case for military MEDEVAC missions. Of 4,542 casualties transported via aeromed-

ical helicopters from the battlefield to an MTF in Afghanistan between 2001 and

2014, the average response time was 73.1 minutes (Kotwal et al., 2016). The RTTs

of military casualties varies by precedence level (i.e., severity level) and range from 1

95



to 24 hours (Department of the Army, 2016). Thus, modeling preemption rules when

examining military EMS response systems is necessary. It is important to understand

when preemption is needed and how much it can improve system performance. More

examples of differences between civilian and military EMS response systems are pre-

sented by Keneally et al. (2016), Rettke et al. (2016), and Jenkins et al. (2019). Due

to these differences, the investigation of military-specific EMS response systems (i.e,

military MEDEVAC systems) is warranted.

ADP research on military MEDEVAC systems exists, but it focuses on the MEDE-

VAC dispatching problem (i.e., determining which MEDEVAC unit to dispatch in

response to a request for service). Of the existing research, Rettke et al. (2016) are

responsible for the first paper that utilizes ADP to improve upon the US military’s

closest-available dispatching policy. The authors design, develop, and test an ADP

strategy that utilizes a least-squares temporal differences (LSTD) value function ap-

proximation scheme within an API algorithmic framework. Robbins et al. (2018) and

Jenkins et al. (2019) follow Rettke et al. (2016) and also utilize ADP strategies to

improve upon the US military’s closest available dispatching policy. More specifically,

Robbins et al. (2018) utilize a hierarchical aggregation value function approximation

scheme within an API algorithmic framework, whereas Jenkins et al. (2019) utilize

LSTD and neural network value function approximation schemes within API algo-

rithmic frameworks. Within all three works, the ADP policies perform significantly

better than the currently practiced closest-available dispatching policy.

This research makes the following contributions. First, it defines the military

MEDEVAC DPR problem, extending prior work on the MEDEVAC dispatching

problem by simultaneously determining dispatching decisions in conjunction with

preemption-rerouting and redeployment decisions. Preemption has yet to be ad-

dressed in either the military or civilian EMS literature. A realistic MDP model

96



of the MEDEVAC DPR problem is formulated that includes: queueing; prioritized

MEDEVAC requests; fuel constraints; dispatching decisions; preemption-rerouting

decisions; and redeployment decisions. Most notably, the incorporation of fuel con-

straints, preemption-rerouting decisions, and redeployment decisions are significant as

they have not been examined in related efforts regarding military MEDEVAC systems

(e.g., Keneally et al. (2016), Rettke et al. (2016), Jenkins et al. (2018), Robbins et al.

(2018), and Jenkins et al. (2019)). Second, this research provides the first proposal

and demonstration of the relative efficacy of an ADP strategy that utilizes an SVR

value function approximation scheme within an API algorithmic framework for mili-

tary MEDEVAC problems. Moreover, this solution methodology has not been applied

within the literature regarding civilian EMS response systems. Third, it examines the

applicability of the MDP model and highlights the efficacy of the proposed solution

methodology for a notional, representative planning scenario based on high-intensity

combat operations in Azerbaijan. Computational experimentation is performed to

determine how selected problem features and algorithmic features impact the quality

of solutions attained by the ADP-generated DPR policies. Fourth, the modeling and

solution approach presented in this work is transferable to civilian EMS response sys-

tems, particularly those located in areas that rely heavily on air evacuation platforms

as the primary means for service (e.g., vast rural regions) or for aeromedical natural

disaster response.

The remainder of this chapter is organized as follows. Section 4.2 sets forth the

MDP model formulation of the MEDEVAC DPR problem. Section 4.3 presents the

proposed ADP solution methodology. Section 4.4 demonstrates the applicability of

the MDP model and examines the efficacy of the proposed ADP solution methodology

via designed computational experiments. Section 4.5 concludes the chapter.
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4.2 Problem Formulation

This section presents a discounted, infinite-horizon Markov decision process (MDP)

model of the military aeromedical evacuation (MEDEVAC) dispatching, preemption-

rerouting, and redeployment (DPR) problem.

4.2.1 State Space

The state of the system is a minimally dimensioned function that is both nec-

essary and sufficient to compute the decision function, transition function, and the

contribution function (Powell, 2011). Let S = (τ, e,M,R) ∈ S denote the state of

the MEDEVAC system, wherein τ is the current system time, e is the current system

event type, M is the MEDEVAC unit status tuple, R is the request status tuple, and

S is the set of all possible states. Throughout this chapter, τ(S) and e(S) respectively

denote the system time and event type when the MEDEVAC system is in state S.

The MEDEVAC unit status tuple is defined as

M = (Mm)m∈M ≡ (M1,M2, . . . ,M|M|),

wherein M = {1, 2, . . . , |M|} denotes the set of MEDEVAC units in the system

and Mm contains information pertaining to MEDEVAC unit m ∈ M. The state of

MEDEVAC unit m is represented by Mm = (ζm, lm, µm, dm, pm, cm), wherein ζm is the

status of the MEDEVAC unit, lm is the location of the MEDEVAC unit, µm is the

expected system time in which the care of the MEDEVAC unit’s onboard casualties is

transferred to an MTF’s staff, dm is the remaining distance the MEDEVAC unit can

travel before violating its refueling threshold, pm is the precedence level of the request

being serviced by the MEDEVAC unit, and cm is the reward (i.e., contribution)

attained by the system for the MEDEVAC unit’s most recent incomplete request
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assignment. For the purposes of this work, it is sufficient to consider nine possibilities

for the status of a MEDEVAC unit, i.e., ζm ∈ {1, 2, . . . , 9}, wherein ζm = 1 shows that

MEDEVAC unit m is idle at a staging facility, ζm = 2 shows that MEDEVAC unit m

is en route to a casualty collection point (CCP), ζm = 3 shows that MEDEVAC unit

m is servicing a request at the request’s CCP (i.e., loading casualties onto MEDEVAC

unit), ζm = 4 shows that MEDEVAC unit m has completed service at the CCP (i.e.,

loaded casualties onto MEDEVAC unit and prepared to travel to nearest MTF),

ζm = 5 shows that MEDEVAC unit m is en route to the nearest MTF, ζm = 6 shows

that MEDEVAC unit m is servicing a request at an MTF (i.e., transferring casualty

care to an MTF’s staff), ζm = 7 shows that MEDEVAC unit m has completed the

service of a request (i.e., transferred casualty care to an MTF’s staff), ζm = 8 shows

that MEDEVAC unit m is en route to a staging facility, and ζm = 9 shows that

MEDEVAC unit m is refueling and re-equipping at a staging facility. Note that, if

MEDEVAC unit m is not currently servicing a request (i.e., ζm ∈ {1, 7, 8, 9}), then

µm = pm = 0. Moreover, if MEDEVAC unit m is currently servicing a request, then

pm ∈ {1, 2}, wherein pm = 1 shows that MEDEVAC unit m is currently servicing

a lower-precedence (i.e., priority) request and pm = 2 shows that MEDEVAC unit

m is currently servicing a higher-precedence (i.e., urgent) request. Lastly, cm > 0

only when ζm = 2 and MEDEVAC unit m has just been preempted-and-rerouted to

service a new request, otherwise cm = 0.

The request status tuple is defined as

R = (Rr)r∈R ≡ (R1, R2, . . . , R|R|),

wherein R = {1, 2, . . . , |R|} denotes the set of possible requests and Rr contains

information pertaining to request r ∈ R. The state of request r is represented by

Rr = (δr, or, tr, ρr, nr), wherein δr is the status of the request, or is the location of
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the request’s CCP, tr is the time at which the request entered the system, ρr is the

precedence of the request (i.e., priority or urgent), and nr is the number of casualties

within the request. The status of request r is either “queued” (i.e., δr = 0) or

“assigned to MEDEVAC unit m” (i.e., δr = m : m ∈ M). A request is removed

from the system once its servicing MEDEVAC unit transfers the care of the request’s

casualties to an MTF’s staff. If request r does not exist, then Rr = (0, 0, 0, 0, 0).

Let rmax denote the maximum number of requests that can be tracked in the system

such that |R| = rmax. This assumption is not restrictive because one may assume a

relatively large rmax.

The dynamics of the system are based on an event driven process. This research

considers seven distinct event types, i.e., e(S) ∈ {1, 2, . . . , 7}, wherein e(S) = 1

represents a request entering the system, e(S) = 2 represents a MEDEVAC unit

arriving at a CCP, e(S) = 3 represents a MEDEDAC unit completing service at a

CCP, e(S) = 4 represents a MEDEDAC unit arriving at an MTF, e(S) = 5 represents

a MEDEDAC unit completing service at an MTF, e(S) = 6 represents a MEDEDAC

unit arriving at a staging facility, and e(S) = 7 represents a MEDEVAC unit becoming

idle at a staging facility.

4.2.2 Action Space

To formulate the action space, consider the definitions for the following sets and

decision variables:

Sets

• Let H = {1, 2 . . . , |H|} denote the set of staging facilities

• Let Q(S) = {r : r ∈ R, δr = 0} denote the set of requests waiting in the queue

for a MEDEVAC unit assignment when the system is in state S
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• Let A1(S) = {m : m ∈ M, ζm ∈ {1, 7}} denote the set of MEDEVAC units

available for dispatching when the system is in state S

• Let A2(S) = {m : m ∈ M, ζm ∈ {2, 8}, pm 6= 2} denote the set of MEDEVAC

units available for preemption-rerouting when the system is in state S

• Let A3(S) = {m : m ∈M, ζm = 7} denote the set of MEDEVAC units available

for redeployment when the system is in state S

Decision Variables

• Let Xmr = 1 if MEDEVAC unit m is dispatched to service request r, 0 otherwise

• Let Ymr = 1 if MEDEVAC unit m is preempted and rerouted to service request

r, 0 otherwise

• Let Zmh = 1 if MEDEVAC unit m is redeployed to staging facility h, 0 otherwise

Given this framework, the action space is described in four cases.

Case 1. If Q(S) 6= ∅ and e(S) ∈ {1, 2, 3, 4, 6, 7}, the decision maker has two types

of decisions: (1) which MEDEVAC units (if any) should immediately dispatch to

service requests waiting in the queue for a MEDEVAC unit assignment and (2) which

MEDEVAC units (if any) should immediately preempt-and-reroute to service requests

waiting in the queue for a MEDEVAC unit assignment. Note that the decision maker

is not required to immediately dispatch or preempt-and-reroute MEDEVAC units to

service new or preexisting requests. Moreover, in this case, the decision maker is

bounded by five constraints. The first constraint,

∑
m∈A1(S)

Xmr +
∑

m∈A2(S)

Ymr ≤ 1,∀ r ∈ Q(S), (46)
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ensures each request has no more than one MEDEVAC unit dispatched or rerouted

to it when the system is in state S. The second and third constraints,

∑
r∈Q(S)

Xmr ≤ 1,∀ m ∈ A1(S) (47)

and ∑
r∈Q(S)

Ymr ≤ 1, ∀ m ∈ A2(S), (48)

ensure each MEDEVAC unit is dispatched or rerouted to no more than one request

when the system is in state S. Let d̄mr denote the total distance required for MEDE-

VAC m to transport request r’s casualties to the nearest MTF. The last two con-

straints,

Xmrd̄mr ≤ dm,∀ m ∈ A1(S),∀ r ∈ Q(S) (49)

and

Ymrd̄mr ≤ dm,∀ m ∈ A2(S),∀ r ∈ Q(S), (50)

ensure that a MEDEVAC unit can only be dispatched or rerouted to a request if the

MEDEVAC unit has sufficient fuel when the system is in state S. Let

X = (Xmr)m∈A1(S),r∈Q(S) ≡ (X1,1, X1,2, . . . , X1,|Q(S)|, X2,1, . . . , X|A1(S)|,|Q(S)|)

denote the dispatch decision tuple and

Y = (Ymr)m∈A2(S),r∈Q(S) ≡ (Y1,1, Y1,2, . . . , Y1,|Q(S)|, Y2,1, . . . , Y|A2(S)|,|Q(S)|)

denote the preempt-and-reroute decision tuple. The action space is given by

X1(S) = {(X, Y ) : Constraints (46)-(50)} .

102



Case 2. If Q(S) = ∅ and e(S) = 5 (i.e., MEDEVAC unit m has just finished

transferring casualty care to an MTF’s staff), the decision maker must decide where

to redeploy MEDEVAC unit m. Note that in this case A3(S) = {m}. Moreover, let

d̄mh denote the total distance required for MEDEVAC m to travel to staging facility h

and I{d̄mh≤dm} denote an indicator function that takes the value of one if the distance

to staging facility h is less than or equal to the remaining distance MEDEVAC unit

m can travel before violating its refueling threshold. The constraint,

∑
h∈H

I{d̄mh≤dm}Zmh = 1,∀ m ∈ A3(S), (51)

requires each redeployable MEDEVAC unit to redeploy to a single staging facility.

Each MTF is collocated with a staging facility, and it is assumed that a MEDEVAC

unit will always have enough fuel to travel from an MTF to the MTF’s collocated

staging facility. Let

Z = (Zmh)m∈A3(S),h∈H ≡ (Z1,1, Z1,2, . . . , Z1,|H|, Z2,1, . . . , Z|A3(S)|,|H|)

denote the redeployment decision tuple. The action space is given by

X2(S) = {Z : Constraint (51)} .

Case 3. If Q(S) 6= ∅ and e(S) = 5 (i.e., MEDEVAC unit m has just finished

transferring casualty care to an MTF’s staff), the decision maker has three types of

decisions: (1) which MEDEVAC units (if any) should immediately dispatch to service

requests waiting in the queue for a MEDEVAC unit assignment, (2) which MEDEVAC

units (if any) should immediately preempt-and-reroute to service requests waiting in

the queue for a MEDEVAC unit assignment, and (3) where to redeploy MEDEVAC
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unit m if it is not dispatched to a request waiting in the queue. Note that in this case

A3(S) = {m}. The constraint,

∑
r∈Q(S)

Xmr +
∑
h∈H

I{d̄mh≤dm}Zmh = 1,∀ m ∈ A3(S), (52)

requires redeployable MEDEVAC units to redeploy to a staging facility if they are

not dispatched to a request waiting in the queue. The action space is given by

X3(S) = {(X, Y, Z) : Constraints (46)-(50), (52)} .

Case 4. If an event type occurs and does not satisfy the criteria of any of the

cases listed above, then the action space is X4(S) = ∅.

4.2.3 Transitions

Let Sk denote the state of the system when the kth event occurs. The evolution

of the MEDEVAC system from state Sk to state Sk+1 is characterized by action xk,

a random element ω(Sk, xk) that captures the information that arrives to the system

in state Sk+1, and a state transition function SM . As such, the following recursion

models the dynamics of the MEDEVAC system: Sk+1 = SM(Sk, xk, ω(Sk, xk)).

4.2.4 Contributions

The MEDEVAC system earns contributions (i.e., rewards) when the decision

maker assigns (i.e., dispatches or preempts-and-reroutes) MEDEVAC units to ser-

vice requests. The total contribution earned depends on several factors (e.g., request

precedence levels, expected service times, and request entry times). Let C(Sk, xk)

denote the immediate expected contribution attained by the system when the system
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is in state Sk and action xk is taken; it is computed as follows

C(Sk, xk) =
∑

m∈A1(Sk)

∑
r∈R

wρrΨρ(µm − tr)Xmr+

∑
m∈A2(Sk)

∑
r∈R

(wρrΨρ(µm − tr)− cm)Ymr,

wherein wρr is a trade-off parameter that scales the contribution attained by the

system based on the precedence level of request r; Ψρ(µm−tr) is a precedence-ρ based

utility function Ψρ that is monotonically decreasing with respect to the difference in

time between the expected service time µm and the entry time tr of request r; and

cm is the reward (i.e., contribution) attained by the system for MEDEVAC unit m’s

most recent incomplete request assignment.

4.2.5 Objective Function and Optimality Equation

Let Dπ(Sk) ∈ X (Sk) represent the decision function that maps the state space to

the action space, indicating the action (i.e., xk) to take when the system is in state

Sk based on a given policy π. The MDP model seeks to determine the optimal policy

π∗ from the class of policies (Dπ(Sk))π∈Π to maximize the expected total discounted

reward earned by the system over an infinite horizon. Accordingly, the objective is

given by

max
π∈Π

Eπ
[
∞∑
k=1

γτ(Sk)C (Sk, D
π(Sk))

]
,

wherein γ ∈ (0, 1] is a fixed discount factor. The optimal policy π∗ maximizes the

expected total discounted contribution and satisfies the following optimality equation

V (Sk) = max
xk∈X (Sk)

(
C(Sk, xk) + γ(τ̂(Sk+1)−τ(Sk))E [V (Sk+1)|Sk, xk]

)
, (53)

wherein τ̂(Sk+1) denotes the time at which the system visits state Sk+1.
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4.3 Solution Methodology

Solving Equation (53) via exact dynamic programming methods (e.g., value iter-

ation or policy iteration) is impractical due to what is commonly referred to as the

curse of dimensionality (i.e., high dimensionality and/or uncountable state space).

To overcome the curse of dimensionality, this research leverages an approximate dy-

namic programming (ADP) strategy to approximate the value function around the

post-decision state variable.

Similar to Rettke et al. (2016) and Jenkins et al. (2019), a post-decision state

convention is adopted to reduce the dimensionality of the state space and to avoid

computing expectations explicitly within Equation (53) (Powell, 2011; Ruszczynski,

2010). The post-decision state captures the state of the system immediately after a

decision is made but before any new information has arrived. Let Sxk denote the post-

decision state variable. The evolution of the aeromedical evacuation (MEDEVAC)

system from pre-decision state Sk to post-decision state Sxk is characterized by action

xt and a deterministic function SM,x. As such, the post-decision state is computed

as follows: Sxk = SM,x(Sk, xk). Utilizing this information, let

V x(Sxk ) = E [V (Sk+1)|Sxk ] (54)

denote the value of being in post-decision state Sxk . By substituting Equation (54)

into Equation (53), the optimality equation is modified to

V (Sk) = max
xk∈X (Sk)

(
C(Sk, xk) + γ(τ̂(Sk+1)−τ(Sk))V x(Sxk )

)
. (55)

Note that the value of being in post decision state Sxk−1 is given by

V x(Sxk−1) = E
[
V (Sk)|Sxk−1

]
. (56)
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By substituting Equation (55) into Equation (56), the optimality equation around

the post-decision state is given by

V x(Sxk−1) = E
[

max
xk∈XSk

(
C(Sk, xk) + γ(τ̂(Sk+1)−τ(Sk))V x(Sxk )

) ∣∣Sxk−1

]
. (57)

Despite the computational advantages attained via the post-decision state con-

vention, solving the updated optimality equation (i.e., Equation (57)) remains im-

practical due to the size and dimensionality of the state space. One of the most

powerful and visible methods for solving complex dynamic programs involves replac-

ing the true value function with a statistical approximation (Powell, 2011). This

research utilizes basis functions to capture important features of the post-decision

state variable and builds a value function approximation from the resulting quan-

tities by leveraging support vector regression (SVR) within an approximate policy

iteration (API) algorithmic framework. Basis functions are appealing due to their

relative simplicity, but the development of appropriate basis functions and features

is an art form and depends on the problem being examined (Powell, 2011). As such,

one of the key challenges in this research is to design basis functions and features that

accurately contribute to the quality of the solution for the MEDEVAC dispatching,

preemption-rerouting, and redeployment (DPR) problem.

Let φf (S
x
k ) denote a basis function, where f ∈ F is a feature that draws infor-

mation from post-decision state Sxk , and F is the set of features. The basis functions

utilized herein are presented next. The first set of basis functions,

φf (S
x
k ) = ζm,

describes the status of each MEDEVAC unit and includes one feature per MEDEVAC

unit m ∈ M. Let I{δr=m} denote an indicator function that takes the value of one if
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MEDEVAC unit m is currently servicing request r. The second set of basis functions,

φf (S
x
k ) = I{δr=m}(µm − τ(Sxk )),

captures the expected remaining service time associated with each active MEDEVAC

unit-request pairing and includes one feature per MEDEVAC unit m ∈ M, request

r ∈ R pairing. Note that a pairing of MEDEVAC unit m ∈ M with request r ∈ R

is considered active if MEDEVAC unit m is currently servicing request r. The third

set of basis functions,

φf (S
x
k ) = I{δr=m}pm,

identifies the precedence level associated with each active MEDEVAC unit-request

pairing and includes one feature per pairing. The fourth set of basis functions,

φf (S
x
k ) = I{δr=0}ρr,

captures the precedence level of each request currently not being serviced and includes

one feature per request r ∈ R. The fifth set of basis functions,

φf (S
x
k ) = (τ(Sxk )− tr),

identifies the total time each request has been in the system and includes one feature

per request r ∈ R. The last set of basis functions,

φf (S
x
k ) = d̄mr,

captures the total distance required for each MEDEVAC unit to service request r

for each r ∈ R and includes one feature per MEDEVAC unit m ∈ M, request
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r ∈ R pairing. This basis function informs the system which MEDEVAC units have

enough fuel to be dispatched or preempted-and-rerouted to service requests waiting

for assignment.

Utilizing these basis functions, the post-decision state value function V x(Sxk ) is

replaced with a linear approximation architecture given by

V̄ x(Sxk |θ) =
∑
f∈F

θfφ
s
f (S

x
k ) ≡ θTφs(Sxk ), (58)

wherein θ = (θf )f∈F is a column vector of basis functions weights and φs(Sxk ) =

(φsf (S
x
k ))f∈F is a column vector of scaled (i.e., normalized) basis function evaluations.

Utilizing continuous data that cover different ranges can cause difficulty for some

machine learning strategies (e.g., SVR). Normalization techniques can be used to

transform continuous data to a specified range while maintaining the relative dif-

ferences between the values (Kelleher et al., 2015). As such, this research adopts a

normalization strategy that scales the value of each basis function evaluation between

zero and one to make the data format suitable for the SVR strategy utilized. Substi-

tuting Equation (58) into Equation (57) yields the post-decision state value function

approximation

V̄ x(Sxk−1|θ) = E
[
C (Sk, D

π(Sk|θ)) + γ(τ̂(Sk+1)−τ(Sk))V̄ x(Sxk |θ)
∣∣Sxk−1

]
, (59)

wherein the action xk is determined via the decision function

Dπ(Sk|θ) = argmax
xk∈XSk

{
C(Sk, xk) + γ(τ̂(Sk+1)−τ(Sk))V̄ x(Sxk |θ)

}
. (60)

Having defined the decision function and the value function approximation upon

which it is based, the manner in which the value function approximation is updated
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is presented next. This research employs an API algorithmic strategy, the general

structure of which is derived from exact policy iteration, wherein a sequence of value

function approximations and policies are generated from two repeated, alternating

phases: policy evaluation and policy improvement. Within a policy evaluation phase,

the value of a fixed policy is approximated via simulation. Within a policy improve-

ment phase, a new policy is generated by leveraging the data collected in the previous

policy evaluation phase. The API algorithm utilized herein is adapted in part from

Jenkins et al. (2019) and is displayed in Algorithm 3.

Algorithm 3 Approximate Policy Iteration Algorithm

1: Initialize θ.
2: for i = 1 to I do
3: for j = 1 to J do
4: Generate a random post-decision state Sxk−1,j.
5: Compute and record φs(Sxk−1,j).
6: Simulate transition to next pre-decision state Sk,j.
7: Compute and record v̂j utilizing Equation (61).
8: end for
9: Compute θ̂ by solving the optimization problem given in (62)-(65).

10: Update θ utilizing Equation (66).
11: end for
12: Return the approximate value function V̄ x(·|θ).

Algorithm 3 starts by initializing θ, which represents an initial base policy. The al-

gorithm then enters a policy evaluation phase wherein, for each iteration j = 1, . . . , J ,

the following steps occur. A post-decision state Sxk−1,j is randomly generated, and

the associated vector of scaled basis function evaluations φs(Sxk−1,j) is computed and

recorded. Next, the algorithm simulates the transition from post-decision state Sxk−1,j

to pre-decision state Sk,j and collects a sample realization of the value attained from

the current policy via

v̂j = max
xk∈XSk,j

(
C(Sk,j, xk) + γ(τ̂(Sk+1,j)−τ(Sk))V̄ x(Sxk,j|θ)

)
. (61)

110



After J iterations have been performed, the algorithm enters a policy improvement

phase. Within each policy improvement phase, the algorithm leverages the training

data set from the most recent policy evaluation phase (i.e., (φs(Sxk−1,j), v̂j) for j =

1, . . . , J) to compute a sample estimate of θ (i.e., θ̂) via SVR. The essential idea of

SVR is to identify a function (e.g., V̄ x(·|θ̂)) defined by the weights θ̂ such that most of

the observed responses (e.g., v̂j) deviate from the function by a value no greater than

ε for each input pattern (e.g., φs(Sxk−1,j)) and at the same time is flat as possible.

That is, SVR does not care about errors as long as they are within a pre-defined

ε-insensitive zone; for more details and examples of SVR, see Smola and Schölkopf

(2004), Hastie et al. (2009), and Cherkassky (2013). To find the sample estimate θ̂,

SVR solves the following quadratic optimization problem:

minimize
1

2
||θ̂||2 + η

J∑
j=1

(ξj + ξ∗j ) (62)

subject to v̂j − θ̂Tφs(Sxk−1,j) ≤ ε+ ξj, for j = 1, . . . , J, (63)

− v̂j + θ̂Tφs(Sxk−1,j) ≤ ε+ ξ∗j , for j = 1, . . . , J, (64)

ξj, ξ
∗
j ≥ 0 for j = 1, . . . , J. (65)

Here, the regularization parameter η controls the trade-off between model complex-

ity (i.e., the flatness of the function) and the margin-based error (i.e., the degree to

which sample deviations beyond the ε-insensitive zone are tolerated). Note that each

training sample j (i.e., (φs(Sxk−1,j), v̂j)) is associated with slack variables ξj and ξ∗j ,

corresponding to sample deviations above and below the ε-insensitive zone, respec-

tively. For training samples that fall inside the ε-insensitive zone, ξj = ξ∗j = 0. For

training samples that fall outside the ε-insensitive zone, only one of these coefficients

is positive, and the other is zero.
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Once θ̂ is computed, θ is updated via the following equation

θ ← αiθ̂ + (1− αi)θ, (66)

wherein the θ on the right hand side of the equation is the previous estimate based on

the first i − 1 policy improvement iterations and αi is a stepsize rule. This research

incorporates a polynomial stepsize rule given by

αi =
1

iβ
,

wherein β ∈ (0.3, 1] controls the rate at which the stepsizes decline. The best value

of β depends on the problem being examined and must be tuned (Powell, 2011).

The algorithm completes a single policy improvement phase once θ is updated. If

i < I, the algorithm starts a new policy evaluation phase. The algorithmic parameters

I, J, ε, η, and β are tunable, where I is the number of policy improvement phase

iterations; J is the number of policy evaluation phase iterations; ε is a parameter

that controls the degree of overfitting via the width of the ε-insensitive zone; η is a

regularization term that determines the trade-off between the flatness of approximate

value function defined by the basis function weights and the degree to which sample

deviations beyond the ε-insensitive zone are tolerated; and β is the polynomial stepsize

parameter that controls the algorithm’s rate of convergence. Concluding after I

policy improvement phases, the algorithm provides the recommended policy θ and

the corresponding approximate value function V̄ x(·|θ).

4.4 Testing, Results, & Analysis

This section utilizes a representative military aeromedical evacuation (MEDE-

VAC) planning scenario to demonstrate the applicability of the Markov decision
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process (MDP) model of the dispatching, preemption-rerouting, and redeployment

(DPR) problem and to examine the efficacy of the proposed approximate dynamic

programming (ADP) solution strategy. Computational experiments are designed and

conducted to examine how different algorithmic parameter settings impact the per-

formance of the ADP strategy. Comparisons are made between the ADP-generated

policies and two benchmark policies, one of which is the currently practiced closest-

available dispatching policy. This research utilizes a dual Intel Xeon E5-2650v2 work-

station having 128 GB of RAM and invokes the commercial solver CPLEX 12.6 while

leveraging MATLAB’s Parallel Computing Toolbox to conduct the experiments and

analyses presented herein.

4.4.1 Representative Scenario

This research utilizes the notional, representative military MEDEVAC planning

scenario presented in Jenkins et al. (2019) wherein the United States (US) military

is performing high-intensity combat operations in support of the Azerbaijan govern-

ment. The scenario considers two main operating bases (i.e., bases that host both a

medical treatment facility (MTF) and a MEDEVAC staging facility) and two forward

operating bases (i.e., bases that only host a MEDEVAC staging facility) as well as 55

casualty cluster centers (i.e., areas in which casualty events are likely to occur), all of

which are depicted in Figure 9 (Jenkins et al., 2019).

The characteristics (e.g., location, entry time, and precedence) of requests for

MEDEVAC service are modeled by simulating a Poisson cluster process. The propor-

tion of requests originating from a particular casualty cluster center depends on the

casualty cluster center’s location. This research considers a baseline instance wherein

casualty events are more likely to occur in the south due to an invasion by a notional

aggressor. The distribution of requests from a particular casualty cluster center is
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Figure 9. Representative Military MEDEVAC Planning Scenario Disposition

generated on a uniform distribution with respect to the distance of the request to

the casualty cluster center. Moreover, requests enter the system sequentially over

time according to a Poisson process with parameter λ. This assumption is reasonable

within the military MEDEVAC context and is utilized in related efforts; see Keneally

et al. (2016), Rettke et al. (2016), Jenkins et al. (2018), Robbins et al. (2018), and

Jenkins et al. (2019) for more details.

The baseline instance considers an average request arrival rate of λ = 1
40

. That

is, the average arrival rate of requests for MEDEVAC service is one request per 40

minutes. To portray a highly kinetic conflict, resulting in a large number of life-

threatening (i.e., urgent) casualty events, the baseline proportions of priority and ur-

gent requests are set to 0.2 and 0.8, respectively (i.e., P(priority, urgent)= (0.2, 0.8)).

This research leverages distributions provided in Bastian (2010), Keneally et al.

(2016), and Jenkins et al. (2018) to model the variability in the times associated with
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each simulated MEDEVAC mission (e.g., mission preparation, travel, and loading

and unloading casualties). Moreover, unlike previous efforts, this research explicitly

models the range of each MEDEVAC unit and only allows MEDEVAC units to service

requests if they have enough fuel to reach the destination (i.e., MTF) and have a

planned fuel reserve of 30 minutes at cruise speed, which aligns with US Army flight

regulations (Department of the Army, 2018).

The trade-off parameters within the contribution function that are associated with

servicing priority and urgent requests are set to w1 = 0.1 and w2 = 1, respectively,

to prioritize urgent requests more than priority requests. Additionally, the discount

factor γ = 0.99 is utilized within the computational experiments. This choice of γ

exhibits relatively low discounting of operational values associated with future events

and motivates the system to position itself to efficiently respond to future requests for

service. Lastly, the maximum number of requests that can be tracked in the system

is set to ten (i.e., rmax = 10).

4.4.2 Experimental Design

For comparison purposes, two benchmark policies are considered. The first bench-

mark policy (i.e., Benchmark 1) utilizes the default MEDEVAC dispatching policy in

practice (i.e., the closest-available dispatching policy). Recall that this policy assigns

the closest-available MEDEVAC unit to respond to a request for service regardless of

the request’s characteristics (e.g., location and precedence) or the MEDEVAC system

state (e.g., location and status of MEDEVAC units). Moreover, this policy considers

a MEDEVAC unit available only when the MEDEVAC unit is not servicing a request.

As such, Benchmark 1 does not allow preemption-and-rerouting of MEDEVAC units.

The second benchmark policy (i.e., Benchmark 2) extends Benchmark 1 by allow-

ing preemption-and-rerouting of MEDEVAC units. That is, Benchmark 2 allows the
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dispatching authority to preempt a MEDEVAC mission and re-route the MEDEVAC

unit to service a more urgent, time sensitive request. Both Benchmark 1 and Bench-

mark 2 utilize a myopic approach, which is commonly utilized in resource allocation

problems, that makes decisions based on the immediate expected reward and does not

consider forecasted information or decisions that must be made in the future (Powell,

2011). Moreover, it is important to note that neither Benchmark 1 or Benchmark 2

consider MEDEVAC unit redeployment since there is no immediate reward associated

with redeployment decisions.

The computational experiments herein measure performance as the percent in-

crease of total discounted reward obtained over an approximated infinite horizon

to that obtained via the Benchmark 1 and Benchmark 2 policies. The efficacy of

ADP-generated policies varies based on different problem and algorithmic features.

An important problem feature of interest is the average request arrival rate λ. The

algorithmic features of interest include the number of policy improvement phase it-

erations, I; the number of policy evaluation phase iterations, J ; the regularization

term within the support vector regression (SVR) quadratic optimization problem, η;

the ε-insensitive zone parameter, ε; and the polynomial stepsize parameter, β.

The optimal values associated with η and ε depend on the training data set. Each

policy evaluation phase generates a new training data set and, as such, prescribing

a fixed value for ε and η for every training data set may yield low quality solutions.

Instead, this research utilizes estimation techniques presented in Cherkassky (2013)

to determine the values for η and ε for each training data set. The value of η is

computed via

η = max{|¯̂v + 3σv̂|, |¯̂v − 3σv̂|},

wherein ¯̂v is the mean and σv̂ is the standard deviation of the observed training
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responses, v̂. The value of ε is computed via

ε = 3σ̂

√
ln J

J
,

wherein σ̂ is the estimated standard deviation of additive noise. The term σ̂ is

determined by first solving the optimization problem given in (62)-(65) with ε = 0

and then applying the model to estimate the noise variance of training samples; see

Cherkassky and Ma (2004) for more details.

A full factorial computational experiment is designed and conducted to examine

the remaining algorithmic features of interest (i.e., I, J , and β) with a baseline average

request arrival rate of λ = 1
40

. Table 9 shows the factor levels considered. To achieve

the desired confidence level, 50 simulation runs are performed for each experimental

design point. Moreover, each simulation run considers a 1,000-minute trajectory,

which is a reasonable approximation because the model utilizes a discounting scheme

and the γτ(Sk) term in the objective function becomes small enough when τ(Sk) = 1000

such that a longer simulation does not impact the measure of performance. These

experiments inform the selection of appropriate algorithmic parameter settings and

provide general insight regarding the performance of the ADP-generated policies for

a high-intensity MEDEVAC DPR problem instance.

Table 9. Experimental Design Factor Levels

Feature Parameter Settings
I {1, 2, . . . , 40}
J {500, 1000, 2000, 4000}
β {0.3, 0.5, 0.7, 0.9}

4.4.3 Experimental Results

Table 10 reports the results from the experimental design. The three leftmost

columns report the factor levels associated with the algorithmic parameter settings.
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Note that Table 10 only reports the I ∈ {1, 2, . . . , 40} factor level corresponding to the

best algorithmic performance for each (J, β) factor level combination. The remaining

columns report the attendant solution qualities of the ADP policies determined at

the experimental design points. These solution qualities provide a measure of algo-

rithm efficacy and are expressed in terms of the 95% confidence intervals of percent

improvement over the Benchmark 1 and Benchmark 2 policies with respect to total

discounted reward over an approximated infinite horizon.

Table 10. Experimental Design Results

Parameter Settings Percent Improvement Over
I J β Benchmark 1 Benchmark 2
30 500 0.3 8.2 ± 0.2 5.3 ± 0.2
35 1000 0.3 8.6 ± 0.2 5.6 ± 0.1
27 2000 0.3 9.5 ± 0.2 6.5 ± 0.2
17 4000 0.3 9.3 ± 0.2 6.4 ± 0.2
10 500 0.5 8.3 ± 0.2 5.3 ± 0.1
8 1000 0.5 8.3 ± 0.2 5.3 ± 0.1

27 2000 0.5 9.6 ± 0.2 6.6 ± 0.2
12 4000 0.5 8.2 ± 0.2 5.2 ± 0.1
10 500 0.7 8.4 ± 0.2 5.4 ± 0.1
7 1000 0.7 8.0 ± 0.1 5.1 ± 0.1

25 2000 0.7 9.0 ± 0.2 6.0 ± 0.2
4 4000 0.7 8.4 ± 0.2 5.4 ± 0.1

30 500 0.9 8.1 ± 0.2 5.2 ± 0.1
7 1000 0.9 7.8 ± 0.1 4.9 ± 0.1

33 2000 0.9 9.4 ± 0.2 6.4 ± 0.2
25 4000 0.9 8.4 ± 0.1 5.4 ± 0.1

The results from Table 10 indicate that the ADP algorithm is able to generate

policies that significantly outperform both the Benchmark 1 and Benchmark 2 policies

when λ = 1
40

. In particular, the best ADP policy occurs when I = 27, J = 2000, and

β = 0.5, resulting in 9.6%±0.2% and 6.6%±0.2% improvements over the Benchmark

1 and Benchmark 2 policies, respectively.

Figure 10 illustrates the percent improvements over Benchmark 1 graphically and

indicates that the best performing ADP policies for each β factor level occur when
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J = 2000. The general trend in Figure 10 shows that performance improves as the

level of J increases to 2000 and declines when J = 4000. This trend illustrates that

large training data sets (e.g., J = 4000) may result in SVR models that overfit the

data and, as such, result in lower-quality ADP policies. Moreover, the results from

Table 10 and Figure 10 show that smaller β-levels typically correspond to greater

improvements over the benchmark policies. Note that smaller β-levels (e.g., 0.3 and

0.5) have slower convergence rates, which improve the responsiveness in the presence

of initial transient conditions (Powell, 2011).

Figure 10. ADP Policies’ Percent Improvement over Benchmark 1 Policy

The average waiting times associated with high-precedence (i.e., urgent) and low-

precedence (i.e., priority) requests for the best performing ADP policy and the bench-

mark policies are reported in Table 11 as well as each policy’s solution quality. Start-

ing from the left, the first column indicates the policy. The second and third columns

respectively report the the average response times for urgent and priority requests
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in terms of their 95% confidence intervals. The last column reports solution quality,

measured in terms of the 95% confidence interval over the Benchmark 1 policies with

respect to total discounted reward over an approximated infinite horizon.

Table 11. Performance of ADP and Benchmark Policies

Service Times (min.) Percent Improvement Over
Policy, π Urgent Priority Benchmark 1
Benchmark 1 56.2 ± 0.2 56.8 ± 0.2 -
Benchmark 2 53.4 ± 0.1 57.6 ± 0.2 2.8 ± 0.1
ADP 48.1 ± 0.1 57.9 ± 0.1 9.6 ± 0.2

The results from Table 11 indicate that the incorporation of preemption-and-

rerouting of MEDEVAC units significantly improves system performance when λ =

1
40

. Recall that the Benchmark 1 policy does not allow for preemption-and-rerouting

of MEDEVAC units whereas both the Benchmark 2 and ADP policies do. As shown in

Table 11, allowing the dispatching authority to preempt a low-precedence MEDEVAC

mission to reroute the MEDEVAC unit to service a high-precedence request results

in better system performance. Another interesting result from Table 11 is that the

average service time of urgent requests decreases whereas the average service time of

priority requests increases as the performance over the Benchmark 1 policy increases.

This result aligns with intuition since the act of preempting priority MEDEVAC

missions to reroute MEDEVAC units to service urgent requests will increase service

time for priority requests and decrease service time for urgent requests.

4.4.4 On the Value of More Information

To illustrate the benefits of utilizing an ADP policy over the benchmark policies,

consider the following vignettes: wait, preempt-and-reroute, and redeploy. For the

wait vignette, consider a system state wherein a request for service has just entered

the system, a distant MEDEVAC unit is available for dispatch, and a busy MEDE-

VAC unit is almost done completing service nearby the just submitted request for
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service. Under the Benchmark 1 and Benchmark 2 policies, the available (but dis-

tant) MEDEVAC unit is dispatched to service the new request, which results in a

lower reward attained by the system when compared to queueing the request and

waiting for the busy MEDEVAC to complete service and then assigning it to the

queued submitted request.

For the preempt-and-reroute vignette, consider a system state wherein a MEDE-

VAC unit has just been tasked to service a low-precedence request in a high demand

area, which is shortly followed by a high-precedence request being submitted from the

same area. Under the Benchmark 1 policy, the busy MEDEVAC unit must complete

service before the dispatching authority can task it to service the new high-precedence

request. Clearly the system benefits by preempting the busy MEDEVAC unit and

rerouting it to service the more time-sensitive, high-precedence request, resulting in

a higher reward attained by the system.

For the redeploy vignette, consider a system state wherein a busy MEDEVAC unit

is almost finished transferring casualty care to an MTF’s staff and a new request enters

the system that is just outside of the MEDEVAC units distance threshold. Under

the Benchmark 1 policy, the MEDEVAC unit must return to its original staging

area to refuel prior to being tasked to service the new request, resulting in a lower

reward attained by the system when compared to redeploying the MEDEVAC to a

closer staging facility to refuel and then rapidly servicing the new request. Unlike the

benchmark policies, the policies generated by the ADP algorithm utilize important

features of the system state, which are captured via the basis functions, to make

decisions based on both current and future events, yielding better decisions and higher

system performance returns.

The impact each basis function has on ADP-generated policies is determined via

their weights (i.e., θ-values). Examination of the θ-values corresponding to the basis

121



functions for the best ADP-generated policy when λ = 1
40

reveals the following in-

sights. The fourth set of basis functions, which corresponds to the precedence level

of requests not being serviced, has the largest impact on the policy. This relative

impact is assessed via the relatively larger θ-values associated with the fourth set of

basis functions, as compared to the θ-values associated with the other sets of basis

functions. Moreover, requests that have been waiting longer have a higher impact on

the policy (i.e., they have larger θ-values) for the fourth set of basis functions.

The analysis also reveals that the last set of basis functions, which reveals which

requests are reachable for each MEDEVAC unit, has the second largest impact on the

policy. Interestingly, the weights associated with MEDEVAC units located farther

away from the high demand request area (i.e., the two bases on the left hand side of

the map in Figure 9) have relatively larger θ-values for the last set of basis functions

as compared to the other bases.

The second set of basis functions, which captures the remaining time in the system

of requests currently being serviced, also has a large impact on the policy. The θ-

values for the second set of basis functions reveal that MEDEVAC units located closer

to the high demand request area (i.e., the two bases on the right hand side of the

map in Figure 9) are substantially larger than the remaining bases.

The last three sets of basis functions have relatively low θ-values, indicating that

they have little-to-no impact on the best performing ADP-generated policy. The θ-

values associated with each basis function changes when important problem features,

such as λ, changes. As the value of λ approaches zero, the θ-values associated with

each set of basis functions decrease. Moreover, as θ-values decreases towards zero the

ADP-generated policy perform more similarly to that of a myopic approach. That

is, as the average rate at which requests enter the system decreases, the difference

between ADP-generated and myopic-generated policies decreases.
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4.4.5 Sensitivity Analysis on Request Arrival Rate

As stated earlier, an interesting problem feature is the average rate at which

requests enter the system (i.e., λ). Figure 11 plots the percent improvement of the

ADP and Benchmark 2 policies over the Benchmark 1 policy for when the value of 1
λ

varies between 20 and 60.

Figure 11. Sensitivity of Performance to Average Request Arrival Rate

The results from Figure 11 show that as λ decreases, the frequency in which

requests enter the system decreases, and the performance improvements over the

Benchmark 1 policy decreases for both the ADP and Benchmark 2 policies. As

requests enter the system at a slower rate, the advantage of waiting, preempting-and-

rerouting, and redeploying diminishes. Accordingly, implementing an ADP policy in

low-intensity conflicts wherein the average request arrival rate is relatively low (e.g.,

λ = 1
60

for this planning scenario) will likely result in marginal performance gains over
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the Benchmark 1 and Benchmark 2 policies. Conversely, as requests enter the system

at a faster rate, the advantage of waiting, preempting-and-rerouting, and redeploying

increases, revealing the benefits of adopting an ADP policy when conflict intensity is

high.

4.5 Conclusions

This chapter examines the military aeromedical evacuation (MEDEVAC) dis-

patching, preemption-rerouting, and redeployment (DPR) problem. The intent of

this research is to determine high-quality DPR policies that improve the performance

of United States Army MEDEVAC systems and hence increase the combat casualty

survivability rate. A discounted, infinite-horizon Markov decision process (MDP)

model of the MEDEVAC DPR problem is formulated and solved via an approxi-

mate dynamic programming (ADP) strategy that utilizes a support vector regression

(SVR) value function approximation scheme within an approximate policy iteration

(API) framework. The objective is to maximize expected total discounted reward

attained by the system. The applicability of the MDP model is examined via a no-

tional, representative planning scenario based on high-intensity combat operations in

Azerbaijan. Computational experimentation is performed to determine how selected

problem features and algorithmic features impact the quality of solutions attained

by the ADP-generated DPR policies and to highlight the efficacy of the proposed

solution methodology.

The results from the computational experiments indicate the ADP-generated poli-

cies significantly outperform the two benchmark policies considered. Moreover, the

results reveal that the average service time of high-precedence, time sensitive (i.e.,

urgent) requests decreases when an ADP policy is adopted during high-intensity con-

flicts. As the rate in which requests enter the system increases, the performance gap

124



between the ADP policy and the Benchmark 1 policy (i.e., the currently practiced

closest-available dispatching policy) increases substantially. Conversely, as the rate

in which request enter the system decreases, the ADP performance improvement over

both benchmark policies decreases, revealing that the ADP policy provides little-to-

no benefit over a myopic approach (e.g., as utilized in the benchmark policies) when

the intensity of a conflict is low. This result comports with similar research efforts

(e.g., Rettke et al. (2016) and Jenkins et al. (2019)) examining MEDEVAC dispatch-

ing models having lesser operational fidelity (and which used different algorithmic

techniques).

This research can be applied to the analysis of both civilian and military emer-

gency medical service (EMS) response systems. Comparisons can be made between

currently practiced policies and the ADP polices determined via the approach pro-

posed in this chapter for a variety of planning scenarios that have fixed staging facili-

ties (i.e., ambulance bases) and medical treatment facilities (i.e., hospitals). Moreover,

medical planners can examine different location schemes and apply this methodology

to determine the best allocation of medical resources. Such comparisons inform the

implementation and modification of current and future tactics, techniques, and pro-

cedures for both civilian and military EMS response systems.
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V. Conclusions and Recommendations

This dissertation considers the importance of optimizing deployed military MEDE-

VAC systems and utilizes operations research techniques to develop models that allow

military medical planners to analyze different strategies regarding the management

of MEDEVAC assets in a deployed environment. For optimization models relating to

selected subproblems of the MEDEVAC enterprise, the work herein leverages integer

programming, multi-objective optimization, Markov decision processes (MDPs), ap-

proximate dynamic programming (ADP), and machine learning, as appropriate, to

identify relevant insights for aerial MEDEVAC operations. Moreover, realistic, but

notional, computational examples are utilized to illustrate the impact and relevance

of the models developed in this dissertation.

The research presented in this dissertation is of interest to both military and

civilian medical planners. Medical planners can apply the models within the disser-

tation to compare different location, allocation, relocation, dispatching, preempting-

rerouting, and redeployment MEDEVAC policies for a variety of planning scenarios.

Such comparisons inform the implementation and modification of current and future

MEDEVAC tactics, techniques, and procedures, as well as the design, evaluation, and

purchase of future aerial MEDEVAC assets.

5.1 Conclusions

Chapter II examines the MEDEVAC location-allocation problem wherein military

medical planners must decide where to locate mobile aeromedical staging facilities

(MASFs) and, implicitly, co-located MTFs as well as identify how many aeromedical

helicopters to allocate to each located MASF throughout the phases of a deployment.

An integer mathematical programming formulation is constructed to determine the
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location and allocation of MEDEVAC assets for each phase of a deployment. Whereas

the identification of an optimal coverage solution for each phase may require a large

number of located MASFs and a significant number of MEDEVAC asset relocations

as a force transitions between phases, the model also seeks to minimize both the

maximum number of located MASFs in any deployment phase and the total number

of MASF relocations throughout the deployment. More specifically, the model seeks

to address the multi-objective problem of maximizing the total expected coverage

of demand as a measure of solution effectiveness, minimizing the maximum number

of located MASFs in any deployment phase as a measure of solution efficiency, and

minimizing the total number of MASF relocations throughout the deployment as a

measure of solution robustness.

The location modeling research presented in Chapter II makes the following con-

tributions. First, it formulates a representative mathematical programming formula-

tion and identifies an accompanying solution methodology to assess and recommend

improvements to deployed military MEDEVAC systems designed to provide large-

scale emergency medical response for contingency operations that range in casualty-

inducing intensity over the phases of a deployment. Second, the research illustrates

the application of the model for a realistic, synthetically generated medical plan-

ning scenario in southern Azerbaijan. Comparisons are made between the models

(multi-phase) optimal solution and the phase-specific optimal solutions that disre-

gard concerns of solution robustness.

Chapter III examines the MEDEVAC dispatching problem wherein a dispatching

authority must decide which (if any) MEDEVAC unit to dispatch in response to a

submitted 9-line MEDEVAC request. A discounted, infinite-horizon MDP model of

the MEDEVAC dispatching problem is formulated to maximize the expected total

discounted reward attained by the system. Whereas the MDP model provides an ap-
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propriate mathematical framework for solving the MEDEVAC dispatching problem,

classical dynamic programming techniques (e.g., policy iteration or value iteration)

are computationally intractable due to the high dimensionality and uncountable state

space of practical scenarios (i.e., large-scale problem instances). As such, two ADP

strategies are designed, tested, and employed to produce high-quality dispatching

policies relative to the currently practiced dispatching policy (i.e., closest-available

dispatching policy). The first ADP strategy utilizes least-squares temporal differ-

ences learning within an approximate policy iteration (API) algorithmic framework,

whereas the second strategy leverages neural network (NN) learning within an API

algorithmic framework. Utilizing features from the MEDEVAC dispatching problem,

a set of basis functions is defined to approximate the value function around the post-

decision state for both ADP strategies. A notional, representative planning scenario

based on high-intensity combat operations in southern Azerbaijan is constructed to

demonstrate the applicability of the MDP model and to examine the efficacy of the

proposed ADP strategies. Moreover, designed computational experiments are con-

ducted to determine how selected problem features and algorithmic features impact

the quality of solutions attained by the ADP-generated dispatching policies.

An important difference between the military MEDEVAC dispatching research

presented in Chapter III and similar research efforts is the incorporation of redeploy-

ment. This aspect gives the dispatching authority the ability to task a MEDEVAC

unit to service incoming or queued requests directly after the MEDEVAC unit com-

pletes service at an MTFs co-located MEDEVAC staging area (i.e., completes refuel-

ing or aircraft and re-equipping of MEDEVAC supplies). This relaxes the restriction

that MEDEVAC units must return to their own staging areas to refuel and re-equip

after delivering combat casualties to an MTF prior to being tasked with another

service request, which is a recognized limitation of previous work. Since MTFs are
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co-located with MEDEVAC staging areas, it is reasonable to assume that MEDE-

VAC units can refuel and re-equip at an MTF’s co-located MEDEVAC staging area

immediately after the MEDEVAC unit transfers combat casualties to the MTF staff,

especially during high-intensity combat operations. In addition to the incorporation

of redeployment, Chapter III jointly considers the relevant problem features examined

in earlier research efforts, including admission control, queueing, and explicit model-

ing of the number of casualties per casualty event. Lastly, Chapter III demonstrates

the improved efficacy of an NN-based ADP strategy for the MEDEVAC dispatching

problem, as compared to an ADP strategy previously offered in the literature (e.g.,

in Rettke et al. (2016)).

Chapter IV examines the MEDEVAC dispatching, preemption-rerouting, and re-

deployment (DPR) problem wherein a decision maker seeks a policy that determines

which MEDEVAC units to assign (i.e., dispatch or preempt-and-reroute) to respond

to requests for service and where MEDEVAC units redeploy after finishing a service

request (i.e., successfully transferred casualty care to an MTF’s staff). A discounted,

infinite-horizon MDP model of the MEDEVAC DPR problem is formulated and solved

via an ADP strategy that utilizes a support vector regression (SVR) value function

approximation scheme within an API framework. The objective is to generate high-

quality policies that dispatch, preempt-and-reroute, and redeploy MEDEVAC units

in a way that improves upon the currently practiced, closest-available dispatching

policy for large-scale, highly kinetic, and intense military conflicts.

The military MEDEVAC dispatching research presented in Chapter IV makes

the following contributions. First, it defines the military MEDEVAC DPR prob-

lem, which extends prior work on the MEDEVAC dispatching problem by simulta-

neously determining dispatching decisions in conjunction with preemption-rerouting

and redeployment decisions. Preemption has yet to be addressed in either the mil-
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itary or civilian EMS literature. A realistic MDP model of the MEDEVAC DPR

problem is formulated that includes: queueing; prioritized MEDEVAC requests; fuel

constraints; dispatching decisions; preemption-rerouting decisions; and redeployment

decisions. Most notably, the incorporation of fuel constraints, preemption-rerouting

decisions, and redeployment decisions are significant as they have not been examined

in related efforts regarding military MEDEVAC systems (e.g., Keneally et al. (2016),

Rettke et al. (2016), and Jenkins et al. (2018), Robbins et al. (2018), Jenkins et al.

(2019)). Second, this chapter provides the first proposal and demonstration of the

relative efficacy of an ADP strategy that utilizes an SVR value function approxima-

tion scheme within an API algorithmic framework for military MEDEVAC problems.

Moreover, this solution methodology has not been applied within the literature re-

garding civilian EMS response systems. Third, it examines the applicability of the

MDP model and highlights the efficacy of the proposed solution methodology for

a notional, representative planning scenario based on high-intensity combat opera-

tions in Azerbaijan. Computational experimentation is performed to determine how

selected problem features and algorithmic features impact the quality of solutions

attained by the ADP-generated DPR policies. Fourth, the modeling and solution

approach presented in this work is transferable to civilian EMS response systems,

particularly those located in areas that heavily rely on air evacuation platforms as

the primary means for service (e.g., vast rural regions) or for aeromedical natural

disaster response.

5.2 Recommendations for Future Research

Whereas the models presented in this dissertation prove to be useful to the med-

ical planning community, there also exists several opportunities for future research.

For example, the location modeling research can be extended via the consideration
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of different objectives (e.g., minimize the maximum distance traveled) and the ex-

ploration of different solution methodologies (e.g., weighted sum and lexicographic).

Moreover, the incorporation of precedence levels, response times, and service times

can enhance the accuracy and applicability of the integer programming formulation,

ultimately improving the reliability of the trade-off analysis generated.

Several limiting assumptions are made in the MEDEVAC dispatching research

that can be relaxed in future work. For example, it is assumed that every MTF

has the capability and capacity to handle all incoming requests for service and each

request is transported to the nearest MTF available. These assumptions can be re-

moved by explicitly modeling the level and capacity of each MTF and developing

a framework that determines locations to which casualties are delivered. Moreover,

high-intensity conflicts may result in casualty events wherein the number of casual-

ties within a single request for service may exceed the capacity of currently utilized

MEDEVAC platforms, requiring the dispatch of more than one MEDEVAC unit. This

phenomenon is not modeled in this research, but can be incorporated in an exten-

sion. Another important extension is the modeling of different types of MEDEVAC

platforms and their associated attributes (e.g., speed and capacity). Within this ex-

tension, one could investigate the trade-offs between employing smaller capacity, but

faster MEDEVAC platforms versus employing larger capacity, but slower MEDEVAC

platforms. Furthermore, precedence (i.e., severity) classification errors during the ini-

tial triage of casualties can result in improper use of MEDEVAC assets and should

be considered in future work when developing dispatching policies.

Lastly, the examination of different ADP strategies (e.g., least squares policy

evaluation, kernel regression, Q-learning, and SARSA) and ADP parameter tuning

approaches (e.g., response surface methodology) may reveal superlative results as

compared to those presented in this research and are the most prominent areas for
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future research.
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