1,625 research outputs found

    Current evidence for spinal X-ray use in the chiropractic profession: A narrative review

    Full text link
    © 2018 The Author(s). The use of routine spinal X-rays within chiropractic has a contentious history. Elements of the profession advocate for the need for routine spinal X-rays to improve patient management, whereas other chiropractors advocate using spinal X-rays only when endorsed by current imaging guidelines. This review aims to summarise the current evidence for the use of spinal X-ray in chiropractic practice, with consideration of the related risks and benefits. Current evidence supports the use of spinal X-rays only in the diagnosis of trauma and spondyloarthropathy, and in the assessment of progressive spinal structural deformities such as adolescent idiopathic scoliosis. MRI is indicated to diagnose serious pathology such as cancer or infection, and to assess the need for surgical management in radiculopathy and spinal stenosis. Strong evidence demonstrates risks of imaging such as excessive radiation exposure, overdiagnosis, subsequent low-value investigation and treatment procedures, and increased costs. In most cases the potential benefits from routine imaging, including spinal X-rays, do not outweigh the potential harms. The use of spinal X-rays should not be routinely performed in chiropractic practice, and should be guided by clinical guidelines and clinician judgement

    Note on a Micropolar Gas-Kinetic Theory

    Full text link
    The micropolar fluid mechanics and its transport coefficients are derived from the linearized Boltzmann equation of rotating particles. In the dilute limit, as expected, transport coefficients relating to microrotation are not important, but the results are useful for the description of collisional granular flow on an inclined slope. (This paper will be published in Traffic and Granular Flow 2001 edited by Y.Sugiyama and D. E. Wolf (Springer))Comment: 15 pages, 0 figure. To be published in Traffic and Granular Flow 2001 edited by Y.Sugiyama and D. E. Wolf (Springer

    Transit Photometry as an Exoplanet Discovery Method

    Full text link
    Photometry with the transit method has arguably been the most successful exoplanet discovery method to date. A short overview about the rise of that method to its present status is given. The method's strength is the rich set of parameters that can be obtained from transiting planets, in particular in combination with radial velocity observations; the basic principles of these parameters are given. The method has however also drawbacks, which are the low probability that transits appear in randomly oriented planet systems, and the presence of astrophysical phenomena that may mimic transits and give rise to false detection positives. In the second part we outline the main factors that determine the design of transit surveys, such as the size of the survey sample, the temporal coverage, the detection precision, the sample brightness and the methods to extract transit events from observed light curves. Lastly, an overview over past, current and future transit surveys is given. For these surveys we indicate their basic instrument configuration and their planet catch, including the ranges of planet sizes and stellar magnitudes that were encountered. Current and future transit detection experiments concentrate primarily on bright or special targets, and we expect that the transit method remains a principal driver of exoplanet science, through new discoveries to be made and through the development of new generations of instruments.Comment: Review chapte

    Considering the role of cognitive control in expert performance

    Get PDF
    © 2014, Springer Science+Business Media Dordrecht. Dreyfus and Dreyfus’ (1986) influential phenomenological analysis of skill acquisition proposes that expert performance is guided by non-cognitive responses which are fast, effortless and apparently intuitive in nature. Although this model has been criticised (e.g., by Breivik Journal of Philosophy of Sport, 34, 116–134 2007, Journal of the Philosophy of Sport, 40, 85–106 2013; Eriksen 2010; Montero Inquiry:An interdisciplinary Journal of Philosophy, 53, 105–122 2010; Montero and Evans 2011) for over-emphasising the role that intuition plays in facilitating skilled performance, it does recognise that on occasions (e.g., when performance goes awry for some reason) a form of ‘detached deliberative rationality’ may be used by experts to improve their performance. However, Dreyfus and Dreyfus (1986) see no role for calculative problem solving or deliberation (i.e., drawing on rules or mental representations) when performance is going well. In the current paper, we draw on empirical evidence, insights from athletes, and phenomenological description to argue that ‘continuous improvement’ (i.e., the phenomenon whereby certain skilled performers appear to be capable of increasing their proficiency even though they are already experts; Toner and Moran 2014) among experts is mediated by cognitive (or executive) control in three distinct sporting situations (i.e., in training, during pre-performance routines, and while engaged in on-line skill execution). We conclude by arguing that Sutton et al. Journal of the British Society for Phenomenology, 42, 78–103 (2011) ‘applying intelligence to the reflexes’ (AIR) approach may help to elucidate the process by which expert performers achieve continuous improvement through analytical/mindful behaviour during training and competition

    Measuring every particle's size from three-dimensional imaging experiments

    Full text link
    Often experimentalists study colloidal suspensions that are nominally monodisperse. In reality these samples have a polydispersity of 4-10%. At the level of an individual particle, the consequences of this polydispersity are unknown as it is difficult to measure an individual particle size from microscopy. We propose a general method to estimate individual particle radii within a moderately concentrated colloidal suspension observed with confocal microscopy. We confirm the validity of our method by numerical simulations of four major systems: random close packing, colloidal gels, nominally monodisperse dense samples, and nominally binary dense samples. We then apply our method to experimental data, and demonstrate the utility of this method with results from four case studies. In the first, we demonstrate that we can recover the full particle size distribution {\it in situ}. In the second, we show that accounting for particle size leads to more accurate structural information in a random close packed sample. In the third, we show that crystal nucleation occurs in locally monodisperse regions. In the fourth, we show that particle mobility in a dense sample is correlated to the local volume fraction.Comment: 7 pages, 5 figure

    Is Ankyrin a genetic risk factor for psychiatric phenotypes?

    Get PDF
    Background Genome wide association studies reported two single nucleotide polymorphisms in ANK3 (rs9804190 and rs10994336) as independent genetic risk factors for bipolar disorder. Another SNP in ANK3 (rs10761482) was associated with schizophrenia in a large European sample. Within the debate on common susceptibility genes for schizophrenia and bipolar disorder, we tried to investigate common findings by analyzing association of ANK3 with schizophrenia, bipolar disorder and unipolar depression. Methods We genotyped three single nucleotide polymorphisms (SNPs) in ANK3 (rs9804190, rs10994336, and rs10761482) in a case-control sample of German descent including 920 patients with schizophrenia, 400 with bipolar affective disorder, 220 patients with unipolar depression according to ICD 10 and 480 healthy controls. Sample was further differentiated according to Leonhard's classification featuring disease entities with specific combination of bipolar and psychotic syndromes. Results We found no association of rs9804190 and rs10994336 with bipolar disorder, unipolar depression or schizophrenia. In contrast to previous findings rs10761482 was associated with bipolar disorder (p = 0.015) but not with schizophrenia or unipolar depression. We observed no association with disease entities according to Leonhard's classification. Conclusion Our results support a specific genetic contribution of ANK3 to bipolar disorder though we failed to replicate findings for schizophrenia. We cannot confirm ANK3 as a common risk factor for different diseases

    Human Mas-related G protein-coupled receptors-X1 induce chemokine receptor 2 expression in rat dorsal root ganglia neurons and release of chemokine ligand 2 from the human LAD-2 mast cell line

    Get PDF
    Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain

    The origin of dust in galaxies revisited: the mechanism determining dust content

    Full text link
    The origin of cosmic dust is a fundamental issue in planetary science. This paper revisits the origin of dust in galaxies, in particular, in the Milky Way, by using a chemical evolution model of a galaxy composed of stars, interstellar medium, metals (elements heavier than helium), and dust. We start from a review of time-evolutionary equations of the four components, and then, we present simple recipes for the stellar remnant mass and yields of metal and dust based on models of stellar nucleosynthesis and dust formation. After calibrating some model parameters with the data from the solar neighborhood, we have confirmed a shortage of the stellar dust production rate relative to the dust destruction rate by supernovae if the destruction efficiency suggested by theoretical works is correct. If the dust mass growth by material accretion in molecular clouds is active, the observed dust amount in the solar neighborhood is reproduced. We present a clear analytic explanation of the mechanism for determining dust content in galaxies after the activation of accretion growth: a balance between accretion growth and supernova destruction. Thus, the dust content is independent of the uncertainty of the stellar dust yield after the growth activation. The timing of the activation is determined by a critical metal mass fraction which depends on the growth and destruction efficiencies. The solar system formation seems to have occurred well after the activation and plenty of dust would have existed in the proto-solar nebula.Comment: 12 pages, 11 figure

    Controls on gut phosphatisation : the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah)

    Get PDF
    Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods--typically the most diverse fossilised organisms in Cambrian ecosystems--where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace

    Three-dimensional echocardiography for left ventricular quantification: fundamental validation and clinical applications

    Get PDF
    One of the earliest applications of clinical echocardiography is evaluation of left ventricular (LV) function and size. Accurate, reproducible and quantitative evaluation of LV function and size is vital for diagnosis, treatment and prediction of prognosis of heart disease. Early three-dimensional (3D) echocardiographic techniques showed better reproducibility than two-dimensional (2D) echocardiography and narrower limits of agreement for assessment of LV function and size in comparison to reference methods, mostly cardiac magnetic resonance (CMR) imaging, but acquisition methods were cumbersome and a lack of user-friendly analysis software initially precluded widespread use. Through the advent of matrix transducers enabling real-time three-dimensional echocardiography (3DE) and improvements in analysis software featuring semi-automated volumetric analysis, 3D echocardiography evolved into a simple and fast imaging modality for everyday clinical use. 3DE provides the possibility to evaluate the entire LV in three spatial dimensions during the complete cardiac cycle, offering a more accurate and complete quantitative evaluation the LV. Improved efficiency in acquisition and analysis may provide clinicians with important diagnostic information within minutes. The current article reviews the methodology and application of 3DE for quantitative evaluation of the LV, provides the scientific evidence for its current clinical use, and discusses its current limitations and potential future directions
    corecore