366 research outputs found
Recommended from our members
Flexible ultrasonic pipe inspection apparatus
Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus
Calibration of the Large Solid Angle Detector
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
The large-N(c) nuclear potential puzzle
An analysis of the baryon-baryon potential from the point of view of
large-N(c) QCD is performed. A comparison is made between the N(c)-scaling
behavior directly obtained from an analysis at the quark-gluon level to the
N(c)-scaling of the potential for a generic hadronic field theory in which it
arises via meson exchanges and for which the parameters of the theory are given
by their canonical large-N(c) scaling behavior. The purpose of this comparison
is to use large-N(c) consistency to test the widespread view that the
interaction between nuclei arises from QCD through the exchange of mesons.
Although at the one- and two-meson exchange level the scaling rules for the
potential derived from the hadronic theory matches the quark-gluon level
prediction, at the three- and higher-meson exchange level a generic hadronic
theory yields a potential which scales with N(c) faster than that of the
quark-gluon theory.Comment: 17 pages, LaTeX, 5 figure
The observed distribution of spectroscopic binaries from the Anglo-Australian Planet Search
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.We report the detection of sixteen binary systems from the Anglo-Australian Planet Search. Solutions to the radial velocity data indicate that the stars have companions orbiting with a wide range of masses, eccentricities and periods. Three of the systems potentially contain brown-dwarf companions while another two have eccentricities that place them in the extreme upper tail of the eccentricity distribution for binaries with periods less than 1000 d. For periods up to 12 years, the distribution of our stellar companion masses is fairly flat, mirroring that seen in other radial velocity surveys, and contrasts sharply with the current distribution of candidate planetary masses, which rises strongly below 10 MJ. When looking at a larger sample of binaries that have FGK star primaries as a function of the primary star metallicity, we find that the distribution maintains a binary fraction of ∼43 ± 4 per cent between −1.0 and +0.6 dex in metallicity. This is in stark contrast to the giant exoplanet distribution. This result is in good agreement with binary formation models that invoke fragmentation of a collapsing giant molecular cloud, suggesting that this is the dominant formation mechanism for close binaries and not fragmentation of the primary star's remnant protoplanetary disc.Peer reviewe
Preliminary investigation of slurry erosion behaviour of tantalum
Frequent premature failure of the ISIS spallation neutron source target prompted the investigation of previously unexplored aqueous slurry erosion response of pure tantalum (Ta) with an overarching aim to improve the service life of the target; hence, reducing the disposal of radioactive waste. Understanding such response of Ta is highly significant to many other applications such as nuclear and chemical processing.
In this study, powder-metallurgically manufactured pure Ta was investigated with the help of an impinging jet aqueous slurry erosion apparatus using silicon carbide particles at a range of concentration, impact velocity, and incident angle. Results revealed a unique material removal mechanism consisting formation of extensive voids/cavities all over the eroded surface. These mechanisms are discussed considering the theories of solid particle erosion and the grain boundary sliding behaviour of Ta under localised indentation loading
Directional Radiation and Photodissociation Regions in Molecular Hydrogen Clouds
Some astrophysical observations of molecular hydrogen point to a broadening
of the velocity distribution for molecules at excited rotational levels. This
effect is observed in both Galactic and high redshift clouds. Analysis of H_2,
HD, and CI absorption lines has revealed the broadening effect in the
absorption system of QSO 1232+082 (z_{abs}=2.33771). We analyze line broadening
mechanisms by considering in detail the transfer of ultraviolet radiation (in
the resonance lines of the Lyman and Werner H_2 molecular bands) for various
velocity distributions at excited rotational levels. The mechanism we suggest
includes the saturation of the lines that populate excited rotational levels
(radiative pumping) and manifests itself most clearly in the case of
directional radiation in the medium. Based on the calculated structure of a
molecular hydrogen cloud in rotational level populations, we have considered an
additional mechanism that takes into account the presence of a
photodissociation region. Note that disregarding the broadening effects we
investigated can lead to a significant systematic error when the data are
processed.Comment: 14 pages, 10 figure
The semileptonic decays of the B_c meson
We study the semileptonic transitions B_c to \eta_c, J/\psi, D, D^*, B, B^*,
B_s, B_s^* in the framework of a relativistic constituent quark model. We use
experimental data on leptonic J/\psi decay, lattice and QCD sum rule results on
leptonic B_c decay, and on radiative \eta_c transitions to adjust the quark
model parameters. We compute all form factors of the above semileptonic
B_c-transitions and give predictions for various semileptonic B_c decay modes
including their \tau-modes when they are kinematically accessible. The
implications of heavy quark symmetry for the semileptonic decays are discussed
and are shown to be manifest in our explicit relativistic quark model
calculation. A comparison of our results with the results of other calculations
is performed.Comment: 31 pages Latex (uses epsf, revtex). Section II expanded, typos
corrected. This version will appear in Phys. Rev.
Using Heavy Quark Spin Symmetry in Semileptonic Decays
The form factors parameterizing the B_c semileptonic matrix elements can be
related to a few invariant functions if the decoupling of the spin of the heavy
quarks in B_c and in the mesons produced in the semileptonic decays is
exploited. We compute the form factors as overlap integral of the meson
wave-functions obtained using a QCD relativistic potential model, and give
predictions for semileptonic and non-leptonic B_c decay modes. We also discuss
possible experimental tests of the heavy quark spin symmetry in B_c decays.Comment: RevTex, 22 pages, 2 figure
Is the Sun Embedded in a Typical Interstellar Cloud?
The physical properties and kinematics of the partially ionized interstellar
material near the Sun are typical of warm diffuse clouds in the solar vicinity.
The interstellar magnetic field at the heliosphere and the kinematics of nearby
clouds are naturally explained in terms of the S1 superbubble shell. The
interstellar radiation field at the Sun appears to be harder than the field
ionizing ambient diffuse gas, which may be a consequence of the low opacity of
the tiny cloud surrounding the heliosphere. The spatial context of the Local
Bubble is consistent with our location in the Orion spur.Comment: "From the Outer Heliosphere to the Local Bubble", held at
International Space Sciences Institute, October 200
Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission
The hot Local Bubble surrounding the solar neighborhood has been primarily
studied through observations of its soft X-ray emission. The measurements were
obtained by attributing all of the observed local soft X-rays to the bubble.
However, mounting evidence shows that the heliosphere also produces diffuse
X-rays. The source is solar wind ions that have received an electron from
another atom. The presence of this alternate explanation for locally produced
diffuse X-rays calls into question the existence and character of the Local
Bubble. This article addresses these questions. It reviews the literature on
solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts
for roughly half of the observed local 1/4 keV X-rays found at low latitudes.
This article also makes predictions for the heliospheric O VI column density
and intensity, finding them to be smaller than the observational error bars.
Evidence for the continued belief that the Local Bubble contains hot gas
includes the remaining local 1/4 keV intensity, the observed local O VI column
density, and the need to fill the local region with some sort of plasma. If the
true Local Bubble is half as bright as previously thought, then its electron
density and thermal pressure are 1/square-root(2) as great as previously
thought, and its energy requirements and emission measure are 1/2 as great as
previously thought. These adjustments can be accommodated easily, and, in fact,
bring the Local Bubble's pressure more in line with that of the adjacent
material. Suggestions for future work are made.Comment: 9 pages, refereed, accepted for publication in the proceedings of the
"From the Outer Heliosphere to the Local Bubble: Comparisons of New
Observations with Theory" conference and in Space Science Review
- …