378 research outputs found

    The influence of the chameleon field potential on transition frequencies of gravitationally bound quantum states of ultra-cold neutrons

    Full text link
    We calculate the chameleon field potential for ultracold neutrons, bouncing on top of one or between two neutron mirrors in the gravitational field of the Earth. For the resulting non--linear equations of motion we give approximate analytical solutions and compare them with exact numerical ones for which we propose the analytical fit. The obtained solutions may be used for the quantitative analysis of contributions of a chameleon field to the transition frequencies of quantum states of ultra-cold neutrons bound in the gravitational field of the Earth.Comment: 11 pages, 4 figure

    Neutron Interferometry constrains dark energy chameleon fields

    Full text link
    We present phase shift measurements for neutron matter waves in vacuum and in low pressure Helium using a method originally developed for neutron scattering length measurements in neutron interferometry. We search for phase shifts associated with a coupling to scalar fields. We set stringent limits for a scalar chameleon field, a prominent quintessence dark energy candidate. We find that the coupling constant β\beta is less than 1.9 ×107\times10^7~for n=1n=1 at 95\% confidence level, where nn is an input parameter of the self--interaction of the chameleon field φ\varphi inversely proportional to φn\varphi^n.Comment: 7 pages, 4 figure

    Ramsey's Method of Separated Oscillating Fields and its Application to Gravitationally Induced Quantum Phaseshifts

    Full text link
    We propose to apply Ramsey's method of separated oscillating fields to the spectroscopy of the quantum states in the gravity potential above a vertical mirror. This method allows a precise measurement of quantum mechanical phaseshifts of a Schr\"odinger wave packet bouncing off a hard surface in the gravitational field of the earth. Measurements with ultra-cold neutrons will offer a sensitivity to Newton's law or hypothetical short-ranged interactions, which is about 21 orders of magnitude below the energy scale of electromagnetism.Comment: 7 pages, 6 figure

    Comparison of ultracold neutron sources for fundamental physics measurements

    Full text link
    Ultracold neutrons (UCNs) are key for precision studies of fundamental parameters of the neutron and in searches for new CP violating processes or exotic interactions beyond the Standard Model of particle physics. The most prominent example is the search for a permanent electric dipole moment of the neutron (nEDM). We have performed an experimental comparison of the leading UCN sources currently operating. We have used a 'standard' UCN storage bottle with a volume of 32 liters, comparable in size to nEDM experiments, which allows us to compare the UCN density available at a given beam port.Comment: 20 pages, 30 Figure
    • …
    corecore