81 research outputs found

    Glycogen synthase kinase-3β inactivation inhibits tumor necrosis factor-α production in microglia by modulating nuclear factor κB and MLK3/JNK signaling cascades

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deciphering the mechanisms that modulate the inflammatory response induced by microglial activation not only improves our insight into neuroinflammation but also provides avenues for designing novel therapies that could halt inflammation-induced neuronal degeneration. Decreasing glycogen synthase kinase-3β (GSK-3β) activity has therapeutic benefits in inflammatory diseases. However, the exact molecular mechanisms underlying GSK-3β inactivation-mediated suppression of the inflammatory response induced by microglial activation have not been completely clarified. Tumor necrosis factor-α (TNF-α) plays a central role in injury caused by neuroinflammation. We investigated the regulatory effect of GSK-3β on TNF-α production by microglia to discern the molecular mechanisms of this modulation.</p> <p>Methods</p> <p>Lipopolysaccharide (LPS) was used to induce an inflammatory response in cultured primary microglia or murine BV-2 microglial cells. Release of TNF-α was measured by ELISA. Signaling molecules were analyzed by western blotting, and activation of NF-κB and AP-1 was measured by ELISA-based DNA binding analysis and luciferase reporter assay. Protein interaction was examined by coimmunoprecipitation.</p> <p>Results</p> <p>Inhibition of GSK-3β by selective GSK-3β inhibitors or by RNA interference attenuated LPS-induced TNF-α production in cultured microglia. Exploration of the mechanisms by which GSK-3β positively regulates inflammatory response showed that LPS-induced IκB-α degradation, NF-κBp65 nuclear translocation, and p65 DNA binding activity were not affected by inhibition of GSK-3β activity. However, GSK-3β inactivation inhibited transactivation activity of p65 by deacetylating p65 at lysine 310. Furthermore, we also demonstrated a functional interaction between mixed lineage kinase 3 (MLK3) and GSK-3β during LPS-induced TNF-α production in microglia. The phosphorylated levels of MLK3, MKK4, and JNK were increased upon LPS treatment. Decreasing GSK-3β activity blocked MLK3 signaling cascades through disruption of MLK3 dimerization-induced autophosphorylation, ultimately leading to a decrease in TNF-α secretion.</p> <p>Conclusion</p> <p>These results suggest that inactivation of GSK-3β might represent a potential strategy to downregulate microglia-mediated inflammatory processes.</p

    Outcomes of patients with rodenticide poisoning at a far east poison center

    Get PDF
    BACKGROUND: Rodenticide poisoning remains a major public health problem in Asian countries. Nevertheless, very few data are available in world literature regarding the outcomes of these patients. Therefore, the purpose of this study was to investigate the clinical outcomes of rodenticide poisonings in our hospital and to compare these data with published reports from other international poison centers. FINDINGS: We retrospectively examined the records of 20 patients with rodenticide poisoning (8 brodifacoum, 12 bromadiolone) who were referred to Chang Gung Memorial Hospital between 2000 and 2011. It was found that most of the rodenticide patients were middle-aged adults. Both genders were equally affected and many patients had a past history of major depressive disorder or schizophrenia. Nevertheless, patients with bromadiolone were referred significantly sooner than patients with brodifacoum poisoning (0.1 ± 0.1 versus 5.5 ± 10.5, P < 0.001). Furthermore, it was found that patients with brodifacoum suffered higher incidences of ecchymosis (50.0% versus 0%, P = 0.006) and hematuria (50.0% versus 0%, P = 0.006) than patients with bromadiolone poisoning. Laboratory analysis also demonstrated a poorer hemostatic profile of patients with brodifacoum [prothrombin time (PT), international normalized ratio (INR), 4.3 ± 4.8 versus 1.0 ± 0.1, P = 0.032; PT prolongation, 50.0% versus 0%, P = 0.006; activated partial thromboplastin time (aPTT) prolongation, 50.0% versus 0%, P = 0.006] than patients with bromadiolone poisoning. At the end of analysis, no patient died of the poisoning. CONCLUSION: The favorable outcome (zero mortality rate) is comparable to the published reports from other international poison centers. Further studies are warranted

    Dynamic Transcript Profiling of Candida Albicans Infection in Zebrafish: a Pathogen-Host Interaction Study

    Get PDF
    Candida albicans is responsible for a number of life-threatening infections and causes considerable morbidity and mortality in immunocompromised patients. Previous studies of C. albicans pathogenesis have suggested several steps must occur before virulent infection, including early adhesion, invasion, and late tissue damage. However, the mechanism that triggers C. albicans transformation from yeast to hyphae form during infection has yet to be fully elucidated. This study used a systems biology approach to investigate C. albicans infection in zebrafish. The surviving fish were sampled at different post-infection time points to obtain time-lapsed, genome-wide transcriptomic data from both organisms, which were accompanied with in sync histological analyses. Principal component analysis (PCA) was used to analyze the dynamic gene expression profiles of significant variations in both C. albicans and zebrafish. The results categorized C. albicans infection into three progressing phases: adhesion, invasion, and damage. Such findings were highly supported by the corresponding histological analysis. Furthermore, the dynamic interspecies transcript profiling revealed that C. albicans activated its filamentous formation during invasion and the iron scavenging functions during the damage phases, whereas zebrafish ceased its iron homeostasis function following massive hemorrhage during the later stages of infection. This was followed by massive hemorrhaging toward the end stage of infection. Most of the immune related genes were expressed as the infection progressed from invasion to the damage phase. Such global, inter-species evidence of virulence-immune and iron competition dynamics during C. albicans infection could be crucial in understanding control fungal pathogenesis

    Aberrant Sensory Gating of the Primary Somatosensory Cortex Contributes to the Motor Circuit Dysfunction in Paroxysmal Kinesigenic Dyskinesia

    Get PDF
    Paroxysmal kinesigenic dyskinesia (PKD) is conventionally regarded as a movement disorder (MD) and characterized by episodic hyperkinesia by sudden movements. However, patients of PKD often have sensory aura and respond excellently to antiepileptic agents. PRRT2 mutations, the most common genetic etiology of PKD, could cause epilepsy syndromes as well. Standing in the twilight zone between MDs and epilepsy, the pathogenesis of PKD is unclear. Gamma oscillations arise from the inhibitory interneurons which are crucial in the thalamocortical circuits. The role of synchronized gamma oscillations in sensory gating is an important mechanism of automatic cortical inhibition. The patterns of gamma oscillations have been used to characterize neurophysiological features of many neurological diseases, including epilepsy and MDs. This study was aimed to investigate the features of gamma synchronizations in PKD. In the paired-pulse electrical-stimulation task, we recorded the magnetoencephalographic data with distributed source modeling and time-frequency analysis in 19 patients of newly-diagnosed PKD without receiving pharmacotherapy and 18 healthy controls. In combination with the magnetic resonance imaging, the source of gamma oscillations was localized in the primary somatosensory cortex. Somatosensory evoked fields of PKD patients had a reduced peak frequency (p &lt; 0.001 for the first and the second response) and a prolonged peak latency (the first response p = 0.02, the second response p = 0.002), indicating the synchronization of gamma oscillation is significantly attenuated. The power ratio between two responses was much higher in the PKD group (p = 0.013), indicating the incompetence of activity suppression. Aberrant gamma synchronizations revealed the defective sensory gating of the somatosensory area contributes the pathogenesis of PKD. Our findings documented disinhibited cortical function is a pathomechanism common to PKD and epilepsy, thus rationalized the clinical overlaps of these two diseases and the therapeutic effect of antiepileptic agents for PKD. There is a greater reduction of the peak gamma frequency in PRRT2-related PKD than the non-PRRT PKD group (p = 0.028 for the first response, p = 0.004 for the second response). Loss-of-function PRRT2 mutations could lead to synaptic dysfunction. The disinhibiton change on neurophysiology reflected the impacts of PRRT2 mutations on human neurophysiology

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    A repeat sequence causes competition of ColE1-type plasmids.

    Get PDF
    Plasmid pSW200 from Pantoea stewartii contains 41 copies of 15-bp repeats and has a replicon that is homologous to that of ColE1. Although deleting the repeats (pSW207) does not change the copy number and stability of the plasmid. The plasmid becomes unstable and is rapidly lost from the host when a homoplasmid with the repeats (pSW201) is present. Deleting the repeats is found to reduce the transcriptional activity of RNAIp and RNAIIp by about 30%, indicating that the repeats promote the transcription of RNAI and RNAII, and how the RNAI that is synthesized by pSW201 inhibits the replication of pSW207. The immunoblot analysis herein demonstrates that RNA polymerase β subunit and σ(70) in the lysate from Escherichia coli MG1655 bind to a biotin-labeled DNA probe that contains the entire sequence of the repeat region. Electrophoretic mobility shift assay also reveals that purified RNA polymerase shifts a DNA probe that contains four copies of the repeats. These results thus obtained reveal that RNA polymerase holoenzyme binds to the repeats. The repeats also exchange RNA polymerase with RNAIp and RNAIIp in vitro, revealing the mechanism by which the transcription is promoted. This investigation elucidates a mechanism by which a plasmid prevents the invasion of an incompatible plasmid and maintains its stability in the host cell during evolution

    Ets1 Plays a Critical Role in MLL/EB1-Mediated Leukemic Transformation in a Mouse Bone Marrow Transplantation Model

    No full text
    Leukemogenic potential of MLL fusion with the coiled-coil domain-containing partner genes and the downstream target genes of this type of MLL fusion have not been clearly investigated. In this study, we demonstrated that the coiled-coil–four-helix bundle structure of EB1 that participated in the MLL/EB1 was required for immortalizing mouse bone marrow (BM) cells and producing myeloid, but not lymphoid, cell lines. Compared to MLL/AF10, MLL/EB1 had low leukemogenic ability. The MLL/EB1 cells grew more slowly owing to increased apoptosis in vitro and induced acute monocytic leukemia with an incomplete penetrance and longer survival in vivo. A comparative analysis of transcriptome profiling between MLL/EB1 and MLL/AF10 cell lines revealed that there was an at least two-fold difference in the induction of 318 genes; overall, 51.3% (163/318) of the genes were known to be bound by MLL, while 15.4% (49/318) were bound by both MLL and MLL/AF9. Analysis of the 318 genes using Gene Ontology–PANTHER overrepresentation test revealed significant differences in several biological processes, including cell differentiation, proliferation/programmed cell death, and cell homing/recruitment. The Ets1 gene, bound by MLL and MLL/AF9, was involved in several biological processes. We demonstrated that Ets1 was selectively upregulated by MLL/EB1. Short hairpin RNA knockdown of Ets1 in MLL/EB1 cells reduced the expression of CD115, apoptosis rate, competitive engraftment to BM and spleen, and incidence of leukemia and prolonged the survival of the diseased mice. Our results demonstrated that MLL/EB1 upregulated Ets1, which controlled the balance of leukemia cells between apoptosis and BM engraftment/clonal expansion.Novelty and impact of this studyThe leukemogenic potential of MLL fusion with cytoplasmic proteins containing coiled-coil dimerization domains and the downstream target genes of this type of MLL fusion remain largely unknown. Using a retroviral transduction/transplantation mouse model, we demonstrated that MLL fusion with the coiled-coil–four-helix bundle structure of EB1 has low leukemogenic ability; Ets1, which is upregulated by MLL/EB1, plays a critical role in leukemic transformation by balance between apoptosis and BM engraftment/clonal expansion

    −10 and −35 sequences in <i>RNAIp</i>, <i>RNAIIp</i>, and DR.

    No full text
    <p>(A) Sequences of -10 and -35 boxes in <i>RNAIp</i> and <i>RNAIIp</i>. (B) Forty-one copies of 15-bp repeats in DR region, from nt 3341 to nt 3955 in pSW200. Sequences that are homologous to the -35 box are underlined.</p
    corecore