171 research outputs found

    Amorphous metallic alloys: a new advance in thin-film diffusion barriers for copper metallization

    Get PDF
    Copper, which has a lower electrical resistivity and a higher resistance to electromigration than aluminum, is currently being evaluated for ULSI applications as a replacement for aluminum. Drawbacks to the use of copper include its strong tendency to oxidation, a high mobility in metals and semiconductors, and a high reactivity with silicon at temperatures as low as 200°C. To overcome these problems, very effective diffusion barriers need to be developed. These barriers should have a low diffusivity for copper, a high thermal stability, and should lack a driving force for chemical reactions with Cu, silicon or silicides. Unlike aluminum, copper does not form stable intermetallic compounds with the transition metals of the V and Cr groups, and the mutual solid solubilities of these metals with Cu are low, so that these metals would seem th be a logical choice for barrier applications. It has long been known, however, that these arguments are misleading[1]. Previous studies have indeed shown Cu diffuses through grain boundaries and defects in a tantalum layer and inth silicon at a relatively low temperature (450°C) causing a failure of devices[2,3]. The effectiveness of non-reactive and insoluble tantalum barriers can be improved by adding impurities like oxygen or nitrogen th stuff grain boundaries of the material in order th suppress fast grain boundary diffusion[4]. It is difficult, however to reproducibly improve the effectiveness of barriers by adjusting the level of impurities. Since amorphous alloys lack grain boundaries that can act as fast diffusion paths, they should offer an improved alternative for effective barriers [5-71. In this paper we report on the properties and diffusion barrier performance of amorphous tantalum and tungsten silicides and tantalum-silicon-nitrogen ternary alloys [3,81 for Cu metallizations

    Amorphous metallic alloys: a new advance in thin-film diffusion barriers for copper metallization

    Get PDF
    Copper, which has a lower electrical resistivity and a higher resistance to electromigration than aluminum, is currently being evaluated for ULSI applications as a replacement for aluminum. Drawbacks to the use of copper include its strong tendency to oxidation, a high mobility in metals and semiconductors, and a high reactivity with silicon at temperatures as low as 200°C. To overcome these problems, very effective diffusion barriers need to be developed. These barriers should have a low diffusivity for copper, a high thermal stability, and should lack a driving force for chemical reactions with Cu, silicon or silicides. Unlike aluminum, copper does not form stable intermetallic compounds with the transition metals of the V and Cr groups, and the mutual solid solubilities of these metals with Cu are low, so that these metals would seem th be a logical choice for barrier applications. It has long been known, however, that these arguments are misleading[1]. Previous studies have indeed shown Cu diffuses through grain boundaries and defects in a tantalum layer and inth silicon at a relatively low temperature (450°C) causing a failure of devices[2,3]. The effectiveness of non-reactive and insoluble tantalum barriers can be improved by adding impurities like oxygen or nitrogen th stuff grain boundaries of the material in order th suppress fast grain boundary diffusion[4]. It is difficult, however to reproducibly improve the effectiveness of barriers by adjusting the level of impurities. Since amorphous alloys lack grain boundaries that can act as fast diffusion paths, they should offer an improved alternative for effective barriers [5-71. In this paper we report on the properties and diffusion barrier performance of amorphous tantalum and tungsten silicides and tantalum-silicon-nitrogen ternary alloys [3,81 for Cu metallizations

    Risk of hospital admission with covid-19 among teachers compared with healthcare workers and other adults of working age in Scotland, March 2020 to July 2021:population based case-control study

    Get PDF
    Objective: To determine the risk of hospital admission with covid-19 and severe covid-19 among teachers and their household members, overall and compared with healthcare workers and adults of working age in the general population. Design: Population based nested case-control study. Setting: Scotland, March 2020 to July 2021, during defined periods of school closures and full openings in response to covid-19. Participants: All cases of covid-19 in adults aged 21 to 65 (n=132 420) and a random sample of controls matched on age, sex, and general practice (n=1 306 566). Adults were identified as actively teaching in a Scottish school by the General Teaching Council for Scotland, and their household members were identified through the unique property reference number. The comparator groups were adults identified as healthcare workers in Scotland, their household members, and the remaining general population of working age. Main outcome measures: The primary outcome was hospital admission with covid-19, defined as having a positive test result for SARS-CoV-2 during hospital admission, being admitted to hospital within 28 days of a positive test result, or receiving a diagnosis of covid-19 on discharge from hospital. Severe covid-19 was defined as being admitted to intensive care or dying within 28 days of a positive test result or assigned covid-19 as a cause of death. Results: Most teachers were young (mean age 42), were women (80%), and had no comorbidities (84%). The risk (cumulative incidence) of hospital admission with covid-19 was <1% for all adults of working age in the general population. Over the study period, in conditional logistic regression models adjusted for age, sex, general practice, race/ethnicity, deprivation, number of comorbidities, and number of adults in the household, teachers showed a lower risk of hospital admission with covid-19 (rate ratio 0.77, 95% confidence interval 0.64 to 0.92) and of severe covid-19 (0.56, 0.33 to 0.97) than the general population. In the first period when schools in Scotland reopened, in autumn 2020, the rate ratio for hospital admission in teachers was 1.20 (0.89 to 1.61) and for severe covid-19 was 0.45 (0.13 to 1.55). The corresponding findings for household members of teachers were 0.91 (0.67 to 1.23) and 0.73 (0.37 to 1.44), and for patient facing healthcare workers were 2.08 (1.73 to 2.50) and 2.26 (1.43 to 3.59). Similar risks were seen for teachers in the second period, when schools reopened in summer 2021. These values were higher than those seen in spring/summer 2020, when schools were mostly closed. Conclusion: Compared with adults of working age who are otherwise similar, teachers and their household members were not found to be at increased risk of hospital admission with covid-19 and were found to be at lower risk of severe covid-19. These findings should reassure those who are engaged in face-to-face teaching

    An Exploratory Study into Objective and Reported Characteristics of Neuropathic Pain in Women with Chronic Pelvic Pain

    Get PDF
    Chronic pelvic pain (CPP) affects 5.7-26.6% women worldwide. 55% have no obvious pathology and 40% have associated endometriosis. Neuropathic pain (NeP) is pain arising as a consequence of a lesion/disease affecting the somatosensory system. The prevalence of NeP in women with CPP is not known. The diagnosis of NeP is challenging because there is no gold-standard assessment. Questionnaires have been used in the clinical setting to diagnose NeP in other chronic pain conditions and quantitative sensory testing (QST) has been used in a research setting to identify abnormal sensory function. We aimed to determine if women with chronic pelvic pain (CPP) have a neuropathic pain (NeP) component to their painful symptoms and how this is best assessed. We performed an exploratory prospective cohort study of 72 pre-menopausal women with a diagnosis of CPP. They underwent a clinician completed questionnaire (DN4) and completed the S-LANSS and PainDETECT™ questionnaires. Additionally QST testing was performed by a clinician. They also completed a patient acceptability questionnaire. Clinical features of NeP were identified by both questionnaires and QST. Of the women who were NeP positive, 56%, 35% and 26% were identified by the S-LANSS, DN4 and PainDETECT™ respectively. When NeP was identified by questionnaire, the associated laparoscopy findings were similar irrespective of which questionnaire was used. No subject had entirely unchanged QST parameters. There were distinct loss and gain subgroups, as well as mixed alteration in function, but this was not necessarily clinically significant in all patients. 80% of patients were confident that questionnaires could diagnose NeP, and 90% found them easy to complete. Early identification of NeP in women with CPP with a simple questionnaire could facilitate targeted therapy with neuromodulators, which are cheap, readily available, and have good safety profiles. This approach could prevent unnecessary or fertility-compromising surgery and prolonged treatment with hormones

    Landscape-Level Wolf Space Use is Correlated With Prey Abundance, Ease of Mobility and the Distribution of Prey Habitat

    Get PDF
    Predator space use influences ecosystem dynamics, and a fundamental goal assumed for a foraging predator is to maximize encounter rate with prey. This can be achieved by disproportionately utilizing areas of high prey density or, where prey are mobile and therefore spatially unpredictable, utilizing patches of their prey\u27s preferred resources. A third, potentially complementary strategy is to increase mobility by using linear features like roads and/or frozen waterways. Here, we used novel population-level predator utilization distributions (termed localized density distributions ) in a single-predator (Wolf), two-prey (moose and caribou) system to evaluate these space-use hypotheses. The study was conducted in contrasting sections of a large boreal forest area in northern Ontario, Canada, with a spatial gradient of human disturbances and predator and prey densities. Our results indicated that wolves consistently used forest stands preferred by moose, their main prey species in this part of Ontario. Direct use of prey-rich areas was also significant but restricted to where there was a high local density of moose, whereas use of linear features was pronounced where local moose density was lower. These behaviors suggest that Wolf foraging decisions, while consistently influenced by spatially anchored patches of prey forage resources, were also determined by local ecological conditions, specifically prey density. Wolves appeared to utilize prey-rich areas when regional preferred prey density exceeded a threshold that made this profitable, whereas they disproportionately used linear features that promoted mobility when low prey density made directly tracking prey distribution unprofitable

    The molecular basis underlying T cell specificity towards citrullinated epitopes presented by HLA-DR4

    Get PDF
    CD4+ T cells recognising citrullinated self-epitopes presented by HLA-DRB1 bearing the shared susceptibility epitope (SE) are implicated in rheumatoid arthritis (RA). However, the underlying T cell receptor (TCR) determinants of epitope specificity towards distinct citrullinated peptide antigens, including vimentin-64cit59-71 and α-enolase-15cit10-22 remain unclear. Using HLA-DR4-tetramers, we examine the T cell repertoire in HLA-DR4 transgenic mice and observe biased TRAV6 TCR gene usage across these two citrullinated epitopes which matches with TCR bias previously observed towards the fibrinogen β−74cit69-81 epitope. Moreover, shared TRAV26-1 gene usage is evident in four α-enolase-15cit10-22 reactive T cells in three human samples. Crystal structures of mouse TRAV6+ and human TRAV26-1+ TCR-HLA-DR4 complexes presenting vimentin-64cit59-71 and α-enolase-15cit10-22, respectively, show three-way interactions between the TCR, SE, citrulline, and the basis for the biased selection of TRAV genes. Position 2 of the citrullinated epitope is a key determinant underpinning TCR specificity. Accordingly, we provide a molecular basis of TCR specificity towards citrullinated epitopes

    Sphenopalatine Artery Pseudoaneurysm Formation Following Facial Trauma: A case Report and Literature Review

    Get PDF
    Facial fractures, specifically orbitozygomatic and zygomaticomaxillary complex fractures, are well-documented and common injuries. Pseudoaneurysm formation following cerebrovascular blunt trauma is a rarely experienced complication with an incidence rate of less than 1% with only a few cases reported in the literature. Traumatic pseudoaneurysm formation of the sphenopalatine artery (SPA), the deepest branch of the maxillary artery, is extremely rare due to the deep location of the SPA and its protection from bony landmarks. In craniofacial trauma, pseudoaneurysm formation is not apparent on physical examination due to its deep location and usually presents as persistent nasal bleeding. SPA pseudoaneurysms can present as complications of surgical osteotomies, endoscopic sinus surgeries, facial trauma, or even as a progression of nasopharyngeal cancer. Endovascular embolization provides, safe, quick, and effective treatment while minimizing the morbidity of extensive surgical exposure. In this case report we describe a sphenopalatine artery pseudoaneurysm formation post trauma to provide insight to these rare entities and highlight the importance of early detection and treatment

    Operational Dust Prediction

    Get PDF
    Over the last few years, numerical prediction of dust aerosol concentration has become prominent at several research and operational weather centres due to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and military authorities and policymakers. Dust prediction in numerical weather prediction-type models faces a number of challenges owing to the complexity of the system. At the centre of the problem is the vast range of scales required to fully account for all of the physical processes related to dust. Another limiting factor is the paucity of suitable dust observations available for model, evaluation and assimilation. This chapter discusses in detail numerical prediction of dust with examples from systems that are currently providing dust forecasts in near real-time or are part of international efforts to establish daily provision of dust forecasts based on multi-model ensembles. The various models are introduced and described along with an overview on the importance of dust prediction activities and a historical perspective. Assimilation and evaluation aspects in dust prediction are also discussed

    An Overview of Regional Experiments on Biomass Burning Aerosols and Related Pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS

    Get PDF
    By modulating the Earth-atmosphere energy, hydrological and biogeochemical cycles, and affecting regional-to-global weather and climate, biomass burning is recognized as one of the major factors affecting the global carbon cycle. However, few comprehensive and wide-ranging experiments have been conducted to characterize biomass-burning pollutants in Southeast Asia (SEA) or assess their regional impact on meteorology, the hydrological cycle, the radiative budget, or climate change. Recently, BASEASIA (Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment) and the 7-SEAS (7- South-East Asian Studies) Dongsha Experiment were conducted during the spring seasons of 2006 and 2010 in northern SEA, respectively, to characterize the chemical, physical, and radiative properties of biomass-burning emissions near the source regions, and assess their effects. This paper provides an overview of results from these two campaigns and related studies collected in this special issue, entitled Observation, modeling and impact studies of biomass burning and pollution in the SE Asian Environment. This volume includes 28 papers, which provide a synopsis of the experiments, regional weatherclimate, chemical characterization of biomass-burning aerosols and related pollutants in source and sink regions, the spatial distribution of air toxics (atmospheric mercury and dioxins) in source and remote areas, a characterization of aerosol physical, optical, and radiative properties, as well as modeling and impact studies. These studies, taken together, provide the first relatively complete dataset of aerosol chemistry and physical observations conducted in the sourcesink region in the northern SEA, with particular emphasis on the marine boundary layer and lower free troposphere (LFT). The data, analysis and modeling included in these papers advance our present knowledge of source characterization of biomass-burning pollutants near the source regions as well as the physical and chemical processes along transport pathways. In addition, we raise key questions to be addressed by a coming deployment during springtime 2013 in northern SEA, named 7-SEASBASELInE (Biomass-burning Aerosols Stratocumulus Environment: Lifecycles and Interactions Experiment). This campaign will include a synergistic approach for further exploring many key atmospheric processes (e.g., complex aerosol-cloud interactions) and impacts of biomass burning on the surface-atmosphere energy budgets during the lifecycles of biomass burning emissions
    corecore