3,195 research outputs found
Replica-molded electro-optic polymer Mach–Zehnder modulator
A Mach-Zehnder electro-optic polymer amplitude modulator is fabricated by a simple and high-throughput soft-stamp replica-molding technique. The modulator structure incorporates the highly nonlinear and stable chromophore, AJL8, doped in amorphous polycarbonate. Single-arm phase-retardation results in a halfwave voltage (V-pi) of 8.4 V at 1600 nm. The on/off extinction ratio is better than 19 dB, resulting from precise Y-branch power splitters and good waveguide uniformity. These results indicate that the simple fabrication process allows for good optical performance from high-fidelity replicas of the original master devices
Broadband energy-efficient optical modulation by hybrid integration of silicon nanophotonics and organic electro-optic polymer
Silicon-organic hybrid integrated devices have emerging applications ranging
from high-speed optical interconnects to photonic electromagnetic-field
sensors. Silicon slot photonic crystal waveguides (PCWs) filled with
electro-optic (EO) polymers combine the slow-light effect in PCWs with the high
polarizability of EO polymers, which promises the realization of
high-performance optical modulators. In this paper, a broadband,
power-efficient, low-dispersion, and compact optical modulator based on an EO
polymer filled silicon slot PCW is presented. A small voltage-length product of
V{\pi}*L=0.282Vmm is achieved, corresponding to an unprecedented record-high
effective in-device EO coefficient (r33) of 1230pm/V. Assisted by a backside
gate voltage, the modulation response up to 50GHz is observed, with a 3-dB
bandwidth of 15GHz, and the estimated energy consumption is 94.4fJ/bit at
10Gbit/s. Furthermore, lattice-shifted PCWs are utilized to enhance the optical
bandwidth by a factor of ~10X over other modulators based on
non-band-engineered PCWs and ring-resonators.Comment: 12 pages, 4 figures, SPIE Photonics West Conference 201
NO removal characteristics of a corona radical shower system under DC and AC/DC superimposed operations
In this paper, the effects of the applied voltage modes on the positive corona discharge morphology and NO removal characteristics from air streams are experimentally investigated. By using a DC superimposed high frequency AC power supply (10-60 kHz), a uniform streamer corona can be generated, which is also less sensitive to electrode mis-arrangements. Hermstein glow can he transferred to streamer corona if the peak-to-peak voltage is larger than 1.0 kV at the voltage change rate of 0.2 kV/µs. A significant amount of NO removal is observed under streamer corona. For the Hermstein glow, the removal is negligible. Moreover, the basic principle for designing AC/DC energized streamer corona is also presented in this pape
Silicon-Organic Hybrid (SOH) Mach-Zehnder Modulators for 100 Gbit/s On-Off Keying
Electro-optic modulators for high-speed on-off keying (OOK) are key
components of short- and mediumreach interconnects in data-center networks.
Besides small footprint and cost-efficient large-scale production, small drive
voltages and ultra-low power consumption are of paramount importance for such
devices. Here we demonstrate that the concept of silicon-organic hybrid (SOH)
integration is perfectly suited for meeting these challenges. The approach
combines the unique processing advantages of large-scale silicon photonics with
unrivalled electro-optic (EO) coefficients obtained by molecular engineering of
organic materials. In our proof-of-concept experiments, we demonstrate
generation and transmission of OOK signals with line rates of up to 100 Gbit/s
using a 1.1 mm-long SOH Mach-Zehnder modulator (MZM) which features a
{\pi}-voltage of only 0.9 V. This experiment represents not only the first
demonstration of 100 Gbit/s OOK on the silicon photonic platform, but also
leads to the lowest drive voltage and energy consumption ever demonstrated at
this data rate for a semiconductor-based device. We support our experimental
results by a theoretical analysis and show that the nonlinear transfer
characteristic of the MZM can be exploited to overcome bandwidth limitations of
the modulator and of the electric driver circuitry. The devices are fabricated
in a commercial silicon photonics line and can hence be combined with the full
portfolio of standard silicon photonic devices. We expect that high-speed
power-efficient SOH modulators may have transformative impact on short-reach
optical networks, enabling compact transceivers with unprecedented energy
efficiency that will be at the heart of future Ethernet interfaces at Tbit/s
data rates
On the Miura map between the dispersionless KP and dispersionless modified KP hierarchies
We investigate the Miura map between the dispersionless KP and dispersionless
modified KP hierarchies. We show that the Miura map is canonical with respect
to their bi-Hamiltonian structures. Moreover, inspired by the works of Takasaki
and Takebe, the twistor construction of solution structure for the
dispersionless modified KP hierarchy is given.Comment: 19 pages, Latex, no figure
Trends in Optical Nonlinearity and Thermal Stability in Electrooptic Chromophores Based upon the 3-(Dicyanomethylene)-2,3-dihydrobenzothiophene-1, 1-dioxide Acceptor
A series of new thiophene-bridged chromophores based on the powerful heterocyclic acceptor 3-(dicyanomethylene)-2,3-dihydrobenzothiophene-1,1-dioxide has been synthesized; the dependence of the linear and second-order nonlinear optical properties and thermal stability of these species upon the donor group and the bridging group have been studied. In addition, the synthesis of a related new acceptor, not containing the fused benzene ring, is described and a chromophore based upon this acceptor is studied
Short hybrid polymer/sol-gel silica waveguide switches with high in-device electro-optic coefficient based on photostable chromophore
The highest electro-optic (EO) coefficient to date is achieved in short polymeric directional coupler switches based on hybrid EO polymer/sol-gel silica waveguides. Optimized poling conditions in such waveguides give a highest in-device EO coefficient of 160 pm/V at 1550 nm using highly efficient and photostable guest–host EO polymer SEO100. Adiabatic waveguide transitions from the passive sol-gel core to active EO polymer cores surrounding the sol-gel core are shown using EO polymer cores with a coplanar tapered structure. Switching voltages of 8.4 and 10.5 V are achieved for electrodes that are 2.1 and 1.5 mm long, respectively, which are half those of EO switches containing the chromophore AJLS102
- …