99 research outputs found
Quantum Statistical Effects in Ultracold Gases of Metastable Helium
Hogervorst, W. [Promotor]Vassen, W. [Copromotor
Theory of correlations between ultra-cold bosons released from an optical lattice
In this paper we develop a theoretical description of the correlations
between ultra-cold bosons after free expansion from confinement in an optical
lattice. We consider the system evolution during expansion and give criteria
for a far field regime. We develop expressions for first and second order
two-point correlations based on a variety of commonly used approximations to
the many-body state of the system including Bogoliubov, meanfield decoupling,
and particle-hole perturbative solution about the perfect Mott-insulator state.
Using these approaches we examine the effects of quantum depletion and pairing
on the system correlations. Comparison with the directly calculated correlation
functions is used to justify a Gaussian form of our theory from which we
develop a general three-dimensional formalism for inhomogeneous lattice systems
suitable for numerical calculations of realistic experimental regimes.Comment: 18 pages, 11 figures. To appear in Phys. Rev. A. (few minor changes
made and typos fixed
A Degenerate Bose-Fermi Mixture of Metastable Atoms
We report the observation of simultaneous quantum degeneracy in a dilute
gaseous Bose-Fermi mixture of metastable atoms. Sympathetic cooling of helium-3
(fermion) by helium-4 (boson), both in the lowest triplet state, allows us to
produce ensembles containing more than 10^6 atoms of each isotope at
temperatures below 1 micro-Kelvin, and achieve a fermionic degeneracy parameter
of T/Tf=0.45. Due to their high internal energy, the detection of individual
metastable atoms with sub-nanosecond time resolution is possible, permitting
the study of bosonic and fermionic quantum gases with unprecedented precision.
This may lead to metastable helium becoming the mainstay of quantum atom
optics.Comment: 4 pages, 3 figures submitted to PR
A Large Atom Number Metastable Helium Bose-Einstein Condensate
We have produced a Bose-Einstein condensate of metastable helium (4He*)
containing over 1.5x10^7 atoms, which is a factor of 25 higher than previously
achieved. The improved starting conditions for evaporative cooling are obtained
by applying one-dimensional Doppler cooling inside a magnetic trap. The same
technique is successfully used to cool the spin-polarized fermionic isotope
(3He*), for which thermalizing collisions are highly suppressed. Our detection
techniques include absorption imaging, time-of-flight measurements on a
microchannel plate detector and ion counting to monitor the formation and decay
of the condensate.Comment: 4 pages, 3 figures (changed content
Nadelige gevolgen van een strafrechtelijke veroordeling: VOG- en DNA-regelgeving
Criminal Justice: Legitimacy, accountability, and effectivit
Producing and Detecting Correlated atoms
We discuss experiments to produce and detect atom correlations in a
degenerate or nearly degenerate gas of neutral atoms. First we treat the atomic
analog of the celebrated Hanbury Brown Twiss experiment, in which atom
correlations result simply from interference effects without any atom
interactions.We have performed this experiment for both bosons and fermions.
Next we show how atom interactions produce correlated atoms using the atomic
analog of spontaneous four-wavemixing. Finally, we briefly mention experiments
on a one dimensional gas on an atom chip in which correlation effects due to
both interference and interactions have been observed.Comment: to appear in conference proceedings "Atomic Physics 20
Assessing knowledge and attitudes about end of life: Evaluation of three instruments designed for adults with intellectual disability
Background
This paper examines the development and psychometric characteristics of three instruments about end of life, designed for use with adults with intellectual disability (ID). Respectively, the instruments assess understanding of the concept of death, endâofâlife planning, and fear of death.
Methods
Part 1: instruments were developed or adapted, and pilot tested with 11 adults with ID and 2 disability staff. Part 2: 39 adults with ID and 40 disability staff were assessed on all three instruments.
Results
We evaluated comprehensibility, internal consistency, interârater reliability, subscale: total score correlations, missing data, and withdrawal. Psychometric findings were mostly good. Overall, 23% of participants with ID withdrew at some point. This outcome may have been as much due to assessment fatigue as to sensitive content. There were no adverse events.
Conclusions
People with ID can reliably complete assessments about endâofâlife. Generally, each instrument was found to be comprehensible, reliable and valid
Quantum Non-Demolition Detection of Strongly Correlated Systems
Preparation, manipulation, and detection of strongly correlated states of
quantum many body systems are among the most important goals and challenges of
modern physics. Ultracold atoms offer an unprecedented playground for
realization of these goals. Here we show how strongly correlated states of
ultracold atoms can be detected in a quantum non-demolition scheme, that is, in
the fundamentally least destructive way permitted by quantum mechanics. In our
method, spatially resolved components of atomic spins couple to quantum
polarization degrees of freedom of light. In this way quantum correlations of
matter are faithfully mapped on those of light; the latter can then be
efficiently measured using homodyne detection. We illustrate the power of such
spatially resolved quantum noise limited polarization measurement by applying
it to detect various standard and "exotic" types of antiferromagnetic order in
lattice systems and by indicating the feasibility of detection of superfluid
order in Fermi liquids.Comment: Published versio
Camparison of the Hanbury Brown-Twiss effect for bosons and fermions
Fifty years ago, Hanbury Brown and Twiss (HBT) discovered photon bunching in
light emitted by a chaotic source, highlighting the importance of two-photon
correlations and stimulating the development of modern quantum optics . The
quantum interpretation of bunching relies upon the constructive interference
between amplitudes involving two indistinguishable photons, and its additive
character is intimately linked to the Bose nature of photons. Advances in atom
cooling and detection have led to the observation and full characterisation of
the atomic analogue of the HBT effect with bosonic atoms. By contrast, fermions
should reveal an antibunching effect, i.e., a tendency to avoid each other.
Antibunching of fermions is associated with destructive two-particle
interference and is related to the Pauli principle forbidding more than one
identical fermion to occupy the same quantum state. Here we report an
experimental comparison of the fermion and the boson HBT effects realised in
the same apparatus with two different isotopes of helium, 3He (a fermion) and
4He (a boson). Ordinary attractive or repulsive interactions between atoms are
negligible, and the contrasting bunching and antibunching behaviours can be
fully attributed to the different quantum statistics. Our result shows how
atom-atom correlation measurements can be used not only for revealing details
in the spatial density, or momentum correlations in an atomic ensemble, but
also to directly observe phase effects linked to the quantum statistics in a
many body system. It may thus find applications to study more exotic situations
>.Comment: Nature 445, 402 (2007). V2 includes the supplementary informatio
- âŠ