129 research outputs found

    Contrasting the UV and X-ray O VI Column Density Inferred for the Outflow in NGC 5548

    Full text link
    We compare X-ray and UV spectroscopic observations of NGC 5548. Both data sets show O VI absorption troughs associated with the AGN outflow from this galaxy. We find that the robust lower limit on the column density of the O VI X-ray trough is seven times larger than the column density found in a study of the O VI UV troughs. This discrepancy suggests that column densities inferred for UV troughs of Seyfert outflows are often severely underestimated. We identify the physical limitations of the UV Gaussian modeling as the probable explanation of the O VI column density discrepancy. Specifically, Gaussian modeling cannot account for a velocity dependent covering fraction, and it is a poor representation for absorption associated with a dynamical outflow. Analysis techniques that use a single covering fraction value for each absorption component suffer from similar limitations. We conclude by suggesting ways to improve the UV analysis.Comment: 16 pages, 1 figure, accepted for publication in Ap

    Abundance and temperature distributions in the hot intra-cluster gas of Abell 4059

    Get PDF
    Using the EPIC and RGS data from a deep (~200 ks) XMM-Newton observation, we investigate the temperature structure (kT and sigma_T ) and the abundances of 9 elements (O, Ne, Mg, Si, S, Ar, Ca, Fe and Ni) of the intra-cluster medium (ICM) in the nearby (z=0.046) cool-core galaxy cluster Abell 4059. Next to a deep analysis of the cluster core, a careful modelling of the EPIC background allows us to build radial profiles up to 12' (~650 kpc) from the core. Probably because of projection effects, the temperature ICM is found not to be in single phase, even in the outer parts of the cluster. The abundances of Ne, Si, S, Ar, Ca and Fe, but also O are peaked towards the core. Fe and O are still significantly detected in the outermost annuli; suggesting that the enrichment by both type Ia and core-collapse SNe started in the early stages of the cluster formation. However, the particularly high Ca/Fe ratio that we find in the core is not well reproduced by the standard SNe yield models. Finally, 2-D maps of temperature and Fe abundance are presented and confirm the existence of a denser, colder, and Fe-rich ridge southwest of the core, previously observed by Chandra. The origin of this asymmetry in the hot gas of the cluster core is still unclear, but might be explained by a past intense ram-pressure stripping event near the central cD galaxy.Comment: 17 pages, 13 figures, accepted for publication in A&

    ROSAT and BeppoSAX evidence of soft X-ray excess emission in the Shapley supercluster: A3571, A3558, A3560 and A3562

    Get PDF
    Excess soft X-ray emission in clusters of galaxies has so far been detected for sources that lie along lines-of-sight to very low Galactic HI column density (such as Coma, A1795, A2199 and Virgo, N_H 0.9-2.0 10^{20} cm-2). We show that the cluster soft excess emission can be investigated even at higher N_H, which provides an opportunity for investigating soft X-ray emission characteristics among a large number of clusters. The ROSAT PSPC analysis of some members of the Shapley concentration (A3571, A3558, A3560 and A3562, at N_H 4-4.5 10^{20} cm-2) bears evidence for excess emission in the 1/4 keV band. We were able to confirm the finding for the case of A3571 by a pointed SAX observation. Within the current sample the soft X-ray flux is again found to be consistently above the level expected from a hot virialized plasma. The data quality is however insufficient to enable a discrimination between alternative models of the excess low energy flux.Comment: ApJL in press, 5 figure

    High- and low energy nonthermal X-ray emission from the cluster of galaxies A 2199

    Full text link
    We report the detection of both soft and hard excess X-ray emission in the cluster of galaxies A 2199, based upon spatially resolved spectroscopy with data from the BeppoSAX, EUVE and ROSAT missions. The excess emission is visible at radii larger than 300 kpc and increases in strength relative to the isothermal component. The total 0.1-100 keV luminosity of this component is 15 % of the cluster luminosity, but it dominates the cluster luminosity at high and low energies. We argue that the most plausible interpretation of the excess emission is an inverse Compton interaction between the cosmic microwave background and relativistic electrons in the cluster. The observed spatial distribution of the non-thermal component implies that there is a large halo of cosmic ray electrons between 0.5-1.5 Mpc surrounding the cluster core. The prominent existence of this component has cosmological implications, as it is significantly changing our picture of a clusters's particle acceleration history, dynamics between the thermal and relativistic media, and total mass budgets.Comment: Accepted for publication in Astrophysical Journal, Letter

    Unveiling the environment surrounding LMXB SAX J1808.4-3658

    Full text link
    Low-mass X-ray binaries (LMXBs) are a natural workbench to study accretion disk phenomena and optimal background sources to measure elemental abundances in the Interstellar medium (ISM). In high-resolution XMM-Newton spectra, the LMXB SAX J1808.4-3658 showed in the past a neon column density significantly higher than expected given its small distance, presumably due to additional absorption from a neon-rich circumstellar medium (CSM). It is possible to detect intrinsic absorption from the CSM by evidence of Keplerian motions or outflows. For this purpose, we use a recent, deep (100 ks long), high-resolution Chandra/LETGS spectrum of SAX J1808.4-3658 in combination with archival data. We estimated the column densities of the different absorbers through the study of their absorption lines. We used both empirical and physical models involving photo- and collisional-ionization in order to determine the nature of the absorbers. The abundances of the cold interstellar gas match the solar values as expected given the proximity of the X-ray source. For the first time in this source, we detected neon and oxygen blueshifted absorption lines that can be well modeled with outflowing photoionized gas. The wind is neon rich (Ne/O>3) and may originate from processed, ionized gas near the accretion disk or its corona. The kinematics (v=500-1000 km/s) are indeed similar to those seen in other accretion disks. We also discovered a system of emission lines with very high Doppler velocities (v~24000 km/s) originating presumably closer to the compact object. Additional observations and UV coverage are needed to accurately determine the wind abundances and its ionization structure.Comment: 12 pages, 10 figures, accepted for publication on A&

    Chemical Enrichment RGS cluster sample (CHEERS): Constraints on turbulence

    Full text link
    Feedback from AGN, galactic mergers, and sloshing are thought to give rise to turbulence, which may prevent cooling in clusters. We aim to measure the turbulence in clusters of galaxies and compare the measurements to some of their structural and evolutionary properties. It is possible to measure the turbulence of the hot gas in clusters by estimating the velocity widths of their X-ray emission lines. The RGS Spectrometers aboard XMM-Newton are currently the only instruments provided with sufficient effective area and spectral resolution in this energy domain. We benefited from excellent 1.6Ms new data provided by the CHEERS project. The new observations improve the quality of the archival data and allow us to place constraints for some clusters, which were not accessible in previous work. One-half of the sample shows upper limits on turbulence less than 500km/s. For several sources, our data are consistent with relatively strong turbulence with upper limits on the velocity widths that are larger than 1000km/s. The NGC507 group of galaxies shows transonic velocities, which are most likely associated with the merging phenomena and bulk motions occurring in this object. Where both low- and high-ionization emission lines have good enough statistics, we find larger upper limits for the hot gas, which is partly due to the different spatial extents of the hot and cool gas phases. Our upper limits are larger than the Mach numbers required to balance cooling, suggesting that dissipation of turbulence may prevent cooling, although other heating processes could be dominant. The systematics associated with the spatial profile of the source continuum make this technique very challenging, though still powerful, for current instruments. The ASTRO-H and Athena missions will revolutionize the velocity estimates and discriminate between different spatial regions and temperature phases.Comment: 16 pages, 18 figures, 3 tables, accepted for publications in Astronomy and Astrophysic
    • …
    corecore