49 research outputs found

    Moderate altitude but not additional endurance training increases markers of oxidative stress in exhaled breath condensate

    Get PDF
    Oxidative stress occurs at altitude, and physical exertion might enhance this stress. In the present study, we investigated the combined effects of exercise and moderate altitude on redox balance in ten endurance exercising biathletes, and five sedentary volunteers during a 6-week-stay at 2,800m. As a marker for oxidative stress, hydrogen peroxide (H2O2) was analyzed by the biosensor measuring system Ecocheck™, and 8-iso prostaglandin F2α (8-iso PGF2α) was determined by enzyme immunoassay in exhaled breath condensate (EBC). To determine the whole blood antioxidative capacity, we measured reduced glutathione (GSH) enzymatically using Ellman's reagent. Exercising athletes and sedentary volunteers showed increased levels of oxidative markers at moderate altitude, contrary to our expectations; there was no difference between both groups. Therefore, all subjects' data were pooled to examine the oxidative stress response exclusively due to altitude exposure. H2O2 levels increased at altitude and remained elevated for 3days after returning to sea level (p≤0.05). On the other hand, 8-iso PGF2α levels showed a tendency to increase at altitude, but declined immediately after returning to sea level (p≤0.001). Hypoxic exposure during the first day at altitude resulted in elevated GSH levels (p≤0.05), that decreased during prolonged sojourn at altitude (p≤0.001). In conclusion, a stay at moderate altitude for up to 6weeks increases markers of oxidative stress in EBC independent of additional endurance training. Notably, this oxidative stress is still detectable 3days upon return to sea leve

    Erythropoietin stimulates hepatocyte regeneration after liver resection

    Get PDF
    The increased relevance of liver surgery and transplantation as a therapeutic modality over the last two decades mandates the development of novel strategies to improve liver regeneration. Here we studied whether erythropoietin (EPO) improves liver regeneration after hepatectomy in pigs. Eighteen female pigs underwent laparoscopic left lateral liver resection and were allocated randomly into three groups. No EPO was administered to the control group (group 1, n=6). Group 2 (n=6) received EPO topically to the liver resection surface in a fibrin sealant. Group 3 (n=6) received EPO topically and systemically. Pigs were sacrificed 14 days after hepatectomy. The fraction of proliferating hepatocytes was determined by ki-67 immunostaining. Liver volume was determined by the principle of Archimedes, Liver weight and volume were significantly increased in group 3 (1249 ± 223 g, 1073 ± 190 ml) compared to group 2 (1027 ± 167 g, 894 ± 105 ml) and group 1 (923 ± 186 g, 813 ± 165 ml). Ki-67 immunostaining of liver tissue close to the resection surface demonstrated a significantly increased percentage of proliferating hepatocytes in group 3 (4.3 ± 1.96 %) and in group 2 (3.5% ± 0.98 %) as compared to group 1 (1.15 ± 1.2 %) 14 days after hepatectomy. Our results indicate for the first time that EPO supports liver regeneration after hepatectomy

    A Randomized Controlled Trial: Regenerative Effects, Efficacy and Safety of Erythropoietin in Burn and Scalding Injuries

    Get PDF
    In adult’s burn injuries belong to the top 15 causes of injury. Annually more than a million patients receive specialized treatment. Improving burned patients’ outcomes is still a challenge. Effects of erythropoietin (EPO) are reported to be pro-angiogenic, pro-regenerative, anti-inflammatory, immunomodulatory and hypoxia/ischemia protective. Study objectives were to demonstrate cytoprotective and regenerative effects of EPO in burned patients in terms of improved wound healing, reduced morbidity and mortality. This was a prospective, placebo-controlled, randomized, double-blind trial. The trial was conducted in 13 specialized burn care centers in Germany. Adult Patients with 2b° or 3° burn injuries were included. Patients received state of the art burn care including obligatory split skin graft transplantation. Study medication was EPO or placebo every other day for 21 days. Between 12/08 and 06/14, 116 patients were randomized, 84 received study medication (EPO 45, Placebo 39). Primary endpoint analysis revealed inconclusive results, as only a minority of patients reached the primary endpoint [100% re-epithelialization: EPO: 23% (9/40); Placebo 30% (11/37)]. Several secondary endpoints such as SOFA score (morbidity), EPO level in blood and wound healing onset revealed clinical, and statistically significant results in favor of the EPO group. Adverse Events (AEs) and Severe Adverse Events (SAEs) were in expected ranges; AEs EPO: 80%, (36/45), Placebo: 77%, (30/39); SAEs EPO: 24%, (11/45), Placebo: 24%, (8/39). Out of 84 patients two died, one per group, thus mortality was lower than expected. Results (SOFA score) indicate a lower morbidity of the EPO group, suggesting pro-regenerative effects of EPO in burned patients. Higher EPO levels might influence the faster onset of re-epithelialization in the first 10 days of the treatment. Both effects could reveal new therapeutic options.Clinical Trial Registration: ISRCT Number: ISRCTN95777824 and EudraCT Number: 2006-002886-38, Protocol Number: 0506

    Diagnosis of quarantine organisms at the JKI in the National Reference Laboratory for organisms harmful to plants

    Get PDF
    Dem JKI wurde im April 2019 durch das Bundesministerium für Ernährung und Landwirtschaft (BMEL) die Funktion des nationalen Referenzlaboratoriums (NRL) für Schadorganismen der Pflanzen zugewiesen. Mit dieser Funktion des NRL für Deutschland sind bestimmte Zuständigkeiten und Aufgaben verbunden, die in der EU-Verordnung 2017/625 (EU, 2017) geregelt sind. Dazu gehören auch Referenzuntersuchungen bzw. die Diag­nose von Quarantäneschadorganismen (QSO). Das NRL stellt eine übergeordnete Einheit innerhalb des JKI dar. Durch insgesamt 14 Prüflabore der JKI-Institute für Pflanzenschutz in Ackerbau und Grünland (A), nationale und internationale Angelegenheiten der Pflanzengesundheit (AG), Epidemiologie und Pathogendiagnostik (EP), Pflanzenschutz in Gartenbau und Forst (GF), Pflanzenschutz in Obst- und Weinbau (OW) wird die Referenzfunktion bei der Diagnose zu verschiedensten (Quarantäne)-Schadorganismen der Pathogengruppen Bakterien, Insekten, Nematoden, Pilze (einschließlich Oomyceten), Phytoplasmen und Viren wahrgenommen.In April 2019, the JKI was officially designated as the Natio­nal Reference Laboratory (NRL) for organisms harmful to plants by the Federal Ministry of Food and Agri­culture (BMEL). This function as NRL for Germany is associated with certain responsibilities and tasks, which are specified in the EU Regulation 2017/625 (EU, 2017). This also includes reference tests and the diagnosis of quarantine pests, respectively. The NRL represents a super­ordinate unit inside JKI. A total of 14 test laboratories from different JKI institutes, namely for Plant Protection in Field Crops and Grassland (A), for National and International Plant Health (AG), for Epidemiology and Pathogen Diagnostics (EP), Plant Protection in Horti­culture and Forests (GF), and for Plant Protection in Fruit Crops and Viticulture (OW) are in charge to carry out a reference function in the diagnosis of (quarantine) pests in the pathogen groups of bacteria, fungi (including oomycetes), insects, nematodes, phytoplasma und viruses

    Impact of Erythropoietin on Intensive Care Unit Patients

    No full text

    Physiology and Pharmacology of Erythropoietin

    No full text

    Novel Erythropoietic Agents: A Threat to Sportsmanship

    No full text

    The Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT/HIF-1ďż˝) is Influenced by Hypoxia and Hypoxia-Mimetics

    No full text
    Background: The Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT, HIF-1β) is a member of the basic-Helix-Loop-Helix PER/ARNT/SIM (bHLH/PAS) protein family and a vital transcriptional regulator regarding development and physiological adaptation processes. ARNT is discussed to be linked with cancer, and other diseases. ARNT is known to be translocated into the cell nucleus, where accumulation of the protein takes place. ARNT is a heterodimerisation partner of the xenobiotic ligand activated Aryl Hydrocarbon Receptor (AhR), the Single Minded proteins (SIM), the cardiovascular helix-loop-helix factor 1 and the Hypoxia Inducible Factor proteins (HIF-α). ARNT is obligatory for HIF-1, HIF-2 and HIF-3 binding to DNA. Whereas degradation of the HIF-α subunits is suppressed by hypoxia, ARNT is generally regarded as constitutively expressed in excess within the cell, and stabilisation is commonly thought to be oxygen-independent. However, we provide evidence that the regulation of ARNT is far more complex. The aim of our study was to reevaluate the regulation of ARNT expression. Methods: We examined cell lines of different origin like MCF-7 and T47D (human breast cancer), HeLa (human cervix carcinoma), Hep3B and HepG2 (human hepatoma), Kelly (human neuroblastoma), REPC (human kidney) and Cos7 (primary primate kidney) cells. We used immunoblot analysis, densitometry, RT-PCR and transient transfection. Results and Conclusion: Our results show that ARNT protein levels are influenced by hypoxia and hypoxia mimetics such as cobalt(II)-chloride (CoCl2) and dimethyloxalylglycine (DMOG) in a cell line specific manner. We demonstrate that this effect might be triggered by HIF-1α which plays an important role in the process of stabilizing ARNT in hypoxia
    corecore