10 research outputs found

    Differentiation of primary CNS lymphoma and glioblastoma using Raman spectroscopy and machine learning algorithms

    Get PDF
    Objective and Methods: Timely discrimination between primary CNS lymphoma (PCNSL) and glioblastoma is crucial for diagnostics and therapy, but most importantly also determines the intraoperative surgical course. Advanced radiological methods allow this to a certain extent but ultimately, biopsy is still necessary for final diagnosis. As an upcoming method that enables tissue analysis by tracking changes in the vibrational state of molecules via inelastic scattered photons, we used Raman Spectroscopy (RS) as a label free method to examine specimens of both tumor entities intraoperatively, as well as postoperatively in formalin fixed paraffin embedded (FFPE) samples. Results: We applied and compared statistical performance of linear and nonlinear machine learning algorithms (Logistic Regression, Random Forest and XGBoost), and found that Random Forest classification distinguished the two tumor entities with a balanced accuracy of 82,4% in intraoperative tissue condition and with 94% using measurements of distinct tumor areas on FFPE tissue. Taking a deeper insight into the spectral properties of the tumor entities, we describe different tumor-specific Raman shifts of interest for classification. Conclusions: Due to our findings, we propose RS as an additional tool for fast and non-destructive, perioperative tumor tissue discrimination, which may augment treatment options at an early stage. RS may further serve as a useful additional tool for neuropathological diagnostics with little requirements for tissue integrity

    PATH-29. POTENTIAL OF RAMAN SPECTROSCOPY IN ONCOLOGICAL NEUROSURGERY

    No full text
    Raman spectroscopy (RS) has gained increasing interest for the analysis of biological tissues within the recent years. It is a label-free, non-destructive method providing insights in biochemical properties of tumor cells. It is possible to compare RS signals with histological properties of identical tissue parts. Therefore, RS bears promising potentials in neurosurgical neurooncology. On one hand, it could potentially be used for both intraoperative tumor diagnostics and resection control. On the other hand, it could provide important knowledge on tumor biochemistry and used for a subclassification of tumors with a potential impact on personalized therapy approaches. Within our group, we analyzed over 3000 measurement points in different brain tumors ex vivo with a robotized RS system and correlated the spectral curves with histopathological results. We separated and subclassified the data by AI-based methods. Additionally, we compared the latter results with those of a handheld probe, which is potentially navigatable for in vivo, intraoperative applications. We could demonstrate, that it is possible to separate distinct tumor groups only based on RS signals, especially by using computer-based signal analysis. Furthermore, we could demonstrate the differences of the spectra of deep-frozen and formalin-fixed tissues versus non-fixed tissues. Based on our results, we will highlight the potentials of RS for intraoperative neurosurgical application in resection control for brain tumors, as well as we will focus on the potentials for brain tumor diagnostics based purely on this method or by using it as an adjunct. Those methods bear additional potentials in the field of personalized chemotherapy approaches

    Application of Raman Spectroscopy for Detection of Histologically Distinct Areas in Formalin-fixed Paraffin-embedded (FFPE) Glioblastoma

    Get PDF
    Background Although microscopic assessment is still the diagnostic gold standard in pathology, non-light microscopic methods such as new imaging methods and molecular pathology have considerably contributed to more precise diagnostics. As an upcoming method, Raman spectroscopy (RS) offers a "molecular fingerprint" which could be used to differentiate tissue heterogeneity or diagnostic entities. RS has been successfully applied on fresh and frozen tissue, however more aggressively, chemically treated tissue such as formalin-fixed, paraffin-embedded (FFPE) samples are challenging for RS. Methods To address this issue, we examined FFPE samples of morphologically highly heterogeneous glioblastoma (GBM) using RS in order to classify histologically defined GBM areas according to RS spectral properties. We have set up a SVM (support vector machine)-based classifier in a training cohort and corroborated our findings in a validation cohort. Results Our trained classifier identified distinct histological areas such as tumor core and necroses in GBM with an overall accuracy of 70.5% based on spectral properties of RS. With an absolute misclassification of 21 out of 471 Raman measurements, our classifier has the property of precisely distinguishing between normal appearing brain tissue and necrosis. When verifying the suitability of our classifier system in a second independent dataset, very little overlap between necrosis and normal appearing brain tissue can be detected. Conclusion These findings show that histologically highly variable samples such as GBM can be reliably recognized by their spectral properties using RS. As a conclusion, we propose that RS may serve useful as a future method in the pathological toolbox

    Machine Learning-Assisted Classification of Paraffin-Embedded Brain Tumors with Raman Spectroscopy

    No full text
    Raman spectroscopy (RS) has demonstrated its utility in neurooncological diagnostics, spanning from intraoperative tumor detection to the analysis of tissue samples peri- and postoperatively. In this study, we employed Raman spectroscopy (RS) to monitor alterations in the molecular vibrational characteristics of a broad range of formalin-fixed, paraffin-embedded (FFPE) intracranial neoplasms (including primary brain tumors and meningiomas, as well as brain metastases) and considered specific challenges when employing RS on FFPE tissue during the routine neuropathological workflow. We spectroscopically measured 82 intracranial neoplasms on CaF2 slides (in total, 679 individual measurements) and set up a machine learning framework to classify spectral characteristics by splitting our data into training cohorts and external validation cohorts. The effectiveness of our machine learning algorithms was assessed by using common performance metrics such as AUROC and AUPR values. With our trained random forest algorithms, we distinguished among various types of gliomas and identified the primary origin in cases of brain metastases. Moreover, we spectroscopically diagnosed tumor types by using biopsy fragments of pure necrotic tissue, a task unattainable through conventional light microscopy. In order to address misclassifications and enhance the assessment of our models, we sought out significant Raman bands suitable for tumor identification. Through the validation phase, we affirmed a considerable complexity within the spectroscopic data, potentially arising not only from the biological tissue subjected to a rigorous chemical procedure but also from residual components of the fixation and paraffin-embedding process. The present study demonstrates not only the potential applications but also the constraints of RS as a diagnostic tool in neuropathology, considering the challenges associated with conducting vibrational spectroscopic analysis on formalin-fixed, paraffin-embedded (FFPE) tissue

    Intraoperative discrimination of native meningioma and dura mater by Raman spectroscopy

    Get PDF
    Meningiomas are among the most frequent tumors of the central nervous system. For a total resection, shown to decrease recurrences, it is paramount to reliably discriminate tumor tissue from normal dura mater intraoperatively. Raman spectroscopy (RS) is a non-destructive, label-free method for vibrational analysis of biochemical molecules. On the microscopic level, RS was already used to differentiate meningioma from dura mater. In this study we test its suitability for intraoperative macroscopic meningioma diagnostics. RS is applied to surgical specimen of intracranial meningiomas. The main purpose is the differentiation of tumor from normal dura mater, in order to potentially accelerate the diagnostic workflow. The collected meningioma and dura mater samples (n = 223 tissue samples from a total of 59 patients) are analyzed under untreated conditions using a new partially robotized RS acquisition system. Spectra (n = 1273) are combined with the according histopathological analysis for each sample. Based on this, a classifier is trained via machine learning. Our trained classifier separates meningioma and dura mater with a sensitivity of 96.06 [Formula: see text] 0.03% and a specificity of 95.44 [Formula: see text] 0.02% for internal fivefold cross validation and 100% and 93.97% if validated with an external test set. RS is an efficient method to discriminate meningioma from healthy dura mater in fresh tissue samples without additional processing or histopathological imaging. It is a quick and reliable complementary diagnostic tool to the neuropathological workflow and has potential for guided surgery. RS offers a safe way to examine unfixed surgical specimens in a perioperative setting

    Impact of Formalin- and Cryofixation on Raman Spectra of Human Tissues and Strategies for Tumor Bank Inclusion

    Get PDF
    peer reviewedReliable training of Raman spectra-based tumor classifiers relies on a substantial sample pool. This study explores the impact of cryofixation (CF) and formalin fixation (FF) on Raman spectra using samples from surgery sites and a tumor bank. A robotic Raman spectrometer scans samples prior to the neuropathological analysis. CF samples showed no significant spectral deviations, appearance, or disappearance of peaks, but an intensity reduction during freezing and subsequent recovery during the thawing process. In contrast, FF induces sustained spectral alterations depending on molecular composition, albeit with good signal-to-noise ratio preservation. These observations are also reflected in the varying dual-class classifier performance, initially trained on native, unfixed samples: The Matthews correlation coefficient is 81.0% for CF and 58.6% for FF meningioma and dura mater. Training on spectral differences between original FF and pure formalin spectra substantially improves FF samples’ classifier performance (74.2%). CF is suitable for training global multiclass classifiers due to its consistent spectrum shape despite intensity reduction. FF introduces changes in peak relationships while preserving the signal-to-noise ratio, making it more suitable for dual-class classification, such as distinguishing between healthy and malignant tissues. Pure formalin spectrum subtraction represents a possible method for mathematical elimination of the FF influence. These findings enable retrospective analysis of processed samples, enhancing pathological work and expanding machine learning techniques

    Impact of Formalin- and Cryofixation on Raman Spectra of Human Tissues and Strategies for Tumor Bank Inclusion

    No full text
    Reliable training of Raman spectra-based tumor classifiers relies on a substantial sample pool. This study explores the impact of cryofixation (CF) and formalin fixation (FF) on Raman spectra using samples from surgery sites and a tumor bank. A robotic Raman spectrometer scans samples prior to the neuropathological analysis. CF samples showed no significant spectral deviations, appearance, or disappearance of peaks, but an intensity reduction during freezing and subsequent recovery during the thawing process. In contrast, FF induces sustained spectral alterations depending on molecular composition, albeit with good signal-to-noise ratio preservation. These observations are also reflected in the varying dual-class classifier performance, initially trained on native, unfixed samples: The Matthews correlation coefficient is 81.0% for CF and 58.6% for FF meningioma and dura mater. Training on spectral differences between original FF and pure formalin spectra substantially improves FF samples’ classifier performance (74.2%). CF is suitable for training global multiclass classifiers due to its consistent spectrum shape despite intensity reduction. FF introduces changes in peak relationships while preserving the signal-to-noise ratio, making it more suitable for dual-class classification, such as distinguishing between healthy and malignant tissues. Pure formalin spectrum subtraction represents a possible method for mathematical elimination of the FF influence. These findings enable retrospective analysis of processed samples, enhancing pathological work and expanding machine learning techniques

    Computational Assessment of Spectral Heterogeneity within Fresh Glioblastoma Tissue Using Raman Spectroscopy and Machine Learning Algorithms

    Get PDF
    peer reviewedUnderstanding and classifying inherent tumor heterogeneity is a multimodal approach, which can be undertaken at the genetic, biochemical, or morphological level, among others. Optical spectral methods such as Raman spectroscopy aim at rapid and non-destructive tissue analysis, where each spectrum generated reflects the individual molecular composition of an examined spot within a (heterogenous) tissue sample. Using a combination of supervised and unsupervised machine learning methods as well as a solid database of Raman spectra of native glioblastoma samples, we succeed not only in distinguishing explicit tumor areas—vital tumor tissue and necrotic tumor tissue can correctly be predicted with an accuracy of 76%—but also in determining and classifying different spectral entities within the histomorphologically distinct class of vital tumor tissue. Measurements of non-pathological, autoptic brain tissue hereby serve as a healthy control since their respective spectroscopic properties form an individual and reproducible cluster within the spectral heterogeneity of a vital tumor sample. The demonstrated decipherment of a spectral glioblastoma heterogeneity will be valuable, especially in the field of spectroscopically guided surgery to delineate tumor margins and to assist resection control

    Computational Assessment of Spectral Heterogeneity within Fresh Glioblastoma Tissue Using Raman Spectroscopy and Machine Learning Algorithms

    No full text
    Understanding and classifying inherent tumor heterogeneity is a multimodal approach, which can be undertaken at the genetic, biochemical, or morphological level, among others. Optical spectral methods such as Raman spectroscopy aim at rapid and non-destructive tissue analysis, where each spectrum generated reflects the individual molecular composition of an examined spot within a (heterogenous) tissue sample. Using a combination of supervised and unsupervised machine learning methods as well as a solid database of Raman spectra of native glioblastoma samples, we succeed not only in distinguishing explicit tumor areas—vital tumor tissue and necrotic tumor tissue can correctly be predicted with an accuracy of 76%—but also in determining and classifying different spectral entities within the histomorphologically distinct class of vital tumor tissue. Measurements of non-pathological, autoptic brain tissue hereby serve as a healthy control since their respective spectroscopic properties form an individual and reproducible cluster within the spectral heterogeneity of a vital tumor sample. The demonstrated decipherment of a spectral glioblastoma heterogeneity will be valuable, especially in the field of spectroscopically guided surgery to delineate tumor margins and to assist resection control

    Computational Assessment of Spectral Heterogeneity within Fresh Glioblastoma Tissue Using Raman Spectroscopy and Machine Learning Algorithms

    No full text
    Understanding and classifying inherent tumor heterogeneity is a multimodal approach, which can be undertaken at the genetic, biochemical, or morphological level, among others. Optical spectral methods such as Raman spectroscopy aim at rapid and non-destructive tissue analysis, where each spectrum generated reflects the individual molecular composition of an examined spot within a (heterogenous) tissue sample. Using a combination of supervised and unsupervised machine learning methods as well as a solid database of Raman spectra of native glioblastoma samples, we succeed not only in distinguishing explicit tumor areas—vital tumor tissue and necrotic tumor tissue can correctly be predicted with an accuracy of 76%—but also in determining and classifying different spectral entities within the histomorphologically distinct class of vital tumor tissue. Measurements of non-pathological, autoptic brain tissue hereby serve as a healthy control since their respective spectroscopic properties form an individual and reproducible cluster within the spectral heterogeneity of a vital tumor sample. The demonstrated decipherment of a spectral glioblastoma heterogeneity will be valuable, especially in the field of spectroscopically guided surgery to delineate tumor margins and to assist resection control
    corecore