12 research outputs found

    Influence of Polyglycidyl-type Bonding Agents on the Viscoelastic Properties of a Carboxyl-terminated Poly(butadiene-co-acrylonitrilе)-based Composite Rocket Propellant

    No full text
    In the present study, functionally substituted bonding agents (triglycidyl isocyanurate and diglycidyl dimethylhydantoin) were incorporated into a composite propellant formulation based on carboxyl-terminated poly(butadiene-co-acrylonitrilе) and ammonium perchlorate. Bonding agents are an important component of a composite propellant, making up to 0.5 wt.% of the formulation. They affect processing, mechanical properties, ballistics, ageing and the characteristics of insensitive munition (IM) propellants. All of the testing has been done using an unmetallized propellant formulation (80 wt.% bimodal ammonium perchlorate and 20 wt.% binder). The focus has been on the mechanical properties of the propellant, as influenced by the presence of these bonding agents. Mechanical uniaxial tensile tests were accompanied by a dynamic mechanical analysis (DMA) over a wide range of temperatures. The storage modulus, loss modulus, loss factor and glass transition temperature for each propellant sample have been evaluated. The network characteristics, such as sol-gel content and crosslink density have been calculated and successfully correlated with the mechanical properties. The dynamic mechanical studies showed that the content of the bonding agent did not influence the glass transition temperature; however, the loss factor was shown to be a function of the crosslink density

    Viscoelastic properties of hydroxyl-terminated poly(butadiene) based composite rocket propellants

    No full text
    In the present study, the viscoelastic response of three composite solid propellants based on hydroxyl-terminated poly(butadiene), ammonium perchlorate and aluminum has been investigated. The investigation was surveyed by dynamic mechanical analysis over a wide range of temperatures and frequencies. The mechanical properties of these materials are related to the macromolecular structure of the binder as well as to the content and nature of solid fillers. The storage modulus, loss modulus, loss factor and glass transition temperature for each propellant sample have been evaluated. The master curves of storage (log G' vs log ω) and loss modulus (log G'' vs log ω) were generated for each propellant. A comparison of logaT vs temperature curves for all propellants indicate conformance to Williams-Landel-Ferry equation. Choosing the glass transition as the reference temperature, WLF equation constants are determined. Fractional free volume at the glass transition temperature and thermal coefficient of free volume expansion values are in accordance with the consideration that Al is reinforcing filler

    Rotational Spectrum and Internal Dynamics of Methylpyruvate

    No full text
    The rotational spectra of five isotopologues (normal and all monosubstituted 13C species) of methylpyruvate have been measured with the pulsed jet Fourier transform microwave technique. Rotational transitions are split into quintets due to the internal rotations of the two methyl groups. The corresponding barriers to internal rotation have been determined to be V3(H3C-O) = 4.883(8) kJ mol-1 and V3(H3C-C) = 4.657(8) kJ mol-1, respectively. Information on the skeletal heavy atom structure has been obtained from the 15 available rotational constants

    Sensing the Molecular Structures of Hexan‐2‐one by Internal Rotation and Microwave Spectroscopy

    No full text
    International audienceUsing two molecular jet Fourier transform spectrometers, the microwave spectrum of hexan-2-one, also called methyl n-butyl ketone, was recorded in the frequency range from 2 to 40 GHz. Three conformers were assigned and fine splittings caused by the internal rotations of the two terminal methyl groups were analyzed. For the acetyl methyl group CH3COC3H6CH3, the torsional barrier is 186.9198(50) cm−1 , 233.5913(97) cm−1 , and 182.2481(25) cm−1 for the three observed conformers, respectively. The value of this parameter could be linked to the structure of the individual conformer, which enabled us to create a rule for predicting the barrier height of the acetyl methyl torsion in ketones. The very small splittings arising from the internal rotation of the butyl methyl group CH3COC3H6CH3 could be resolved as well, yielding the respective torsional barriers of 979.99(88) cm−1 , 1016.30(77) cm−1 , and 961.9(32) cm−1
    corecore